Citation: | ZHANG Yu, BAI Jin, ZHAO Hai-lei. Preparation of nanosized red phosphorus and its application in sodium-ion batteries[J]. Chinese Journal of Engineering, 2022, 44(4): 590-600. doi: 10.13374/j.issn2095-9389.2021.09.18.001 |
[1] |
Hwang J Y, Myung S T, Aurbach D, et al. Effect of nickel and iron on structural and electrochemical properties of O3 type layer cathode materials for sodium-ion batteries. J Power Sources, 2016, 324: 106 doi: 10.1016/j.jpowsour.2016.05.064
|
[2] |
Wang Y S, Mu L Q, Liu J, et al. A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries. Adv Energy Mater, 2015, 5(22): 1501005 doi: 10.1002/aenm.201501005
|
[3] |
Jian Z L, Zhao L, Pan H L, et al. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem Commun, 2012, 14(1): 86 doi: 10.1016/j.elecom.2011.11.009
|
[4] |
Wang W L, Gang Y, Hu Z, et al. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries. Nat Commun, 2020, 11: 980 doi: 10.1038/s41467-020-14444-4
|
[5] |
Li Y Q, Lu Y X, Meng Q S, et al. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance. Adv Energy Mater, 2019, 9(48): 1902852 doi: 10.1002/aenm.201902852
|
[6] |
Kong D Z, Wang Y, Huang S Z, et al. Surface modification of Na2Ti3O7 nanofibre arrays using N-doped graphene quantum dots as advanced anodes for sodium-ion batteries with ultra-stable and high-rate capability. J Mater Chem A, 2019, 7(20): 12751 doi: 10.1039/C9TA01641D
|
[7] |
Liu J, Wen Y R, van Aken P A, et al. Facile synthesis of highly porous Ni–Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium storage. Nano Lett, 2014, 14(11): 6387 doi: 10.1021/nl5028606
|
[8] |
Sottmann J, Herrmann M, Vajeeston P, et al. How crystallite size controls the reaction path in nonaqueous metal ion batteries: The example of sodium bismuth alloying. Chem Mater, 2016, 28(8): 2750 doi: 10.1021/acs.chemmater.6b00491
|
[9] |
Xie X Q, Makaryan T, Zhao M Q, et al. MoS2 nanosheets vertically aligned on carbon paper: A freestanding electrode for highly reversible sodium-ion batteries. Adv Energy Mater, 2016, 6(5): 1502161 doi: 10.1002/aenm.201502161
|
[10] |
Liu S H, Wang Y W, Dong Y F, et al. Ultrafine Fe3O4 quantum dots on hybrid carbon nanosheets for long-life, high-rate alkali-metal storage. ChemElectroChem, 2016, 3(1): 38 doi: 10.1002/celc.201500410
|
[11] |
Shi S S, Sun C L, Yin X P, et al. FeP quantum dots confined in carbon-nanotube-grafted P-doped carbon octahedra for high-rate sodium storage and full-cell applications. Adv Funct Mater, 2020, 30(10): 1909283 doi: 10.1002/adfm.201909283
|
[12] |
Qian J F, Wu X Y, Cao Y L, et al. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angewandte Chemie Int Ed, 2013, 52(17): 4633 doi: 10.1002/anie.201209689
|
[13] |
Zhao R Z, Qian Z, Liu Z Y, et al. Molecular-level heterostructures assembled from layered black phosphorene and Ti3C2 MXene as superior anodes for high-performance sodium ion batteries. Nano Energy, 2019, 65: 104037 doi: 10.1016/j.nanoen.2019.104037
|
[14] |
Lan D N, Li Q. Manipulating local chemistry of phosphorus for high-performance sodium ion battery anode applications. ACS Appl Energy Mater, 2019, 2(1): 661 doi: 10.1021/acsaem.8b01666
|
[15] |
Song J X, Yu Z X, Gordin M L, et al. Advanced sodium ion battery anode constructed via chemical bonding between phosphorus, carbon nanotube, and cross-linked polymer binder. ACS Nano, 2015, 9(12): 11933 doi: 10.1021/acsnano.5b04474
|
[16] |
Zhang Z J, Li W J, Chou S L, et al. Effects of carbon on electrochemical performance of red phosphorus (P) and carbon composite as anode for sodium ion batteries. J Mater Sci Technol, 2021, 68: 140 doi: 10.1016/j.jmst.2020.08.034
|
[17] |
Li W J, Chou S L, Wang J Z, et al. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett, 2013, 13(11): 5480 doi: 10.1021/nl403053v
|
[18] |
Song J, Yu Z, Gordin M L, et al. Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. Nano Lett, 2014, 14(11): 6329 doi: 10.1021/nl502759z
|
[19] |
Feng N, Liang X Q, Pu X, et al. Rational design of red phosphorus/reduced graphene oxide composites for stable sodium ion storage. J Alloys Compd, 2019, 775: 1270 doi: 10.1016/j.jallcom.2018.10.143
|
[20] |
Li W J, Han C, Gu Q F, et al. Three-dimensional electronic network assisted by TiN conductive Pillars and chemical adsorption to boost the electrochemical performance of red phosphorus. ACS Nano, 2020, 14(4): 4609 doi: 10.1021/acsnano.0c00216
|
[21] |
Li W J, Chou S L, Wang J Z, et al. Significant enhancement of the cycling performance and rate capability of the P/C composite via chemical bonding (P–C). J Mater Chem A, 2016, 4(2): 505 doi: 10.1039/C5TA08590J
|
[22] |
Zhang Y K, Tao H C, Li J H, et al. Achieving a high-performance P/C anode through P–O–C bond for sodium ion batteries. Ionics, 2020, 26(7): 3377 doi: 10.1007/s11581-020-03486-9
|
[23] |
Hu Y, Li B, Jiao X X, et al. Stable cycling of phosphorus anode for sodium-ion batteries through chemical bonding with sulfurized polyacrylonitrile. Adv Funct Mater, 2018, 28(23): 1801010 doi: 10.1002/adfm.201801010
|
[24] |
Wang Y T, Yang X D, Zhao C Y, et al. Improving the structure stabilization of red phosphorus anodes via the shape memory effect of a Ni–Ti alloy for high-performance sodium ion batteries. Chem Commun, 2019, 55(32): 4659 doi: 10.1039/C9CC00024K
|
[25] |
Walter M, Erni R, Kovalenko M V. Inexpensive antimony nanocrystals and their composites with red phosphorus as high-performance anode materials for Na-ion batteries. Sci Rep, 2015, 5: 8418 doi: 10.1038/srep08418
|
[26] |
Chin L C, Yi Y H, Chang W C, et al. Significantly improved performance of red phosphorus sodium-ion anodes with the addition of iron. Electrochimica Acta, 2018, 266: 178 doi: 10.1016/j.electacta.2017.12.105
|
[27] |
Liu Y, Ru Q, Gao Y Q, et al. Synthesis and electrochemical research of milled antimony and red phosphorus hybrid inlaid with graphene sheets as anodes for lithium-sodium storage. Energy Technol, 2019, 7(6): 1801022 doi: 10.1002/ente.201801022
|
[28] |
Mi H W, Wang Y T, Chen H, et al. Boosting Na-ion diffusion by piezoelectric effect induced by alloying reaction of micro red-phosphorus/BaTiO3/graphene composite anode. Nano Energy, 2019, 66: 104136 doi: 10.1016/j.nanoen.2019.104136
|
[29] |
Zhang J, Zhang K, Yang J, et al. Engineering solid electrolyte interphase on red phosphorus for long-term and high-capacity sodium storage. Chem Mater, 2020, 32(1): 448 doi: 10.1021/acs.chemmater.9b04043
|
[30] |
Capone I, Hurlbutt K, Naylor A J, et al. Effect of the particle-size distribution on the electrochemical performance of a red phosphorus-carbon composite anode for sodium-ion batteries. Energy Fuels, 2019, 33(5): 4651 doi: 10.1021/acs.energyfuels.9b00385
|
[31] |
Fang K, Liu D, Xiang X Y, et al. Air-stable red phosphorus anode for potassium/sodium-ion batteries enabled through dual-protection design. Nano Energy, 2020, 69: 104451 doi: 10.1016/j.nanoen.2020.104451
|
[32] |
Yu Z X, Song J X, Wang D W, et al. Advanced anode for sodium-ion battery with promising long cycling stability achieved by tuning phosphorus-carbon nanostructures. Nano Energy, 2017, 40: 550 doi: 10.1016/j.nanoen.2017.08.019
|
[33] |
Tian W F, Wang L, Huo K F, et al. Red phosphorus filled biomass carbon as high-capacity and long-life anode for sodium-ion batteries. J Power Sources, 2019, 430: 60 doi: 10.1016/j.jpowsour.2019.04.086
|
[34] |
Zhou J B, Liu X J, Zhu L Q, et al. High-spin sulfur-mediated phosphorous activation enables safe and fast phosphorus anodes for sodium-ion batteries. Chem, 2020, 6(1): 221 doi: 10.1016/j.chempr.2019.10.021
|
[35] |
Liu Y, Zhang A, Shen C, et al. Red phosphorus nanodots on reduced graphene oxide as a flexible and ultra-fast anode for sodium-ion batteries. ACS Nano, 2017, 11(6): 5530 doi: 10.1021/acsnano.7b00557
|
[36] |
Zhu Y J, Wen Y, Fan X L, et al. Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries. ACS Nano, 2015, 9(3): 3254 doi: 10.1021/acsnano.5b00376
|
[37] |
Wu N, Yao H R, Yin Y X, et al. Improving the electrochemical properties of the red P anode in Na-ion batteries via the space confinement of carbon nanopores. J Mater Chem A, 2015, 3(48): 24221 doi: 10.1039/C5TA08367B
|
[38] |
Ruan J, Mo F, Long Z, et al. Tailor-made gives the best fits: Superior Na/K-ion storage performance in exclusively confined red phosphorus system. ACS Nano, 2020, 14(9): 12222 doi: 10.1021/acsnano.0c05951
|
[39] |
Liu Y H, Liu Q Z, Jian C, et al. Red-phosphorus-impregnated carbon nanofibers for sodium-ion batteries and liquefaction of red phosphorus. Nat Commun, 2020, 11: 2520 doi: 10.1038/s41467-020-16077-z
|
[40] |
Wu Y, Xing F F, Xu R, et al. Spatially confining and chemically bonding amorphous red phosphorus in the nitrogen doped porous carbon tubes leading to superior sodium storage performance. J Mater Chem A, 2019, 7(14): 8581 doi: 10.1039/C9TA01039D
|
[41] |
Sun X Z, Li W H, Zhong X W, et al. Superior sodium storage in phosphorus@porous multichannel flexible freestanding carbon nanofibers. Energy Storage Mater, 2017, 9: 112 doi: 10.1016/j.ensm.2017.07.003
|
[42] |
Ruan B Y, Wang J, Shi D Q, et al. A phosphorus/N-doped carbon nanofiber composite as an anode material for sodium-ion batteries. J Mater Chem A, 2015, 3(37): 19011 doi: 10.1039/C5TA04366B
|
[43] |
Yao S S, Cui J, Huang J Q, et al. Rational assembly of hollow microporous carbon spheres as P hosts for long-life sodium-ion batteries. Adv Energy Mater, 2018, 8(7): 1702267 doi: 10.1002/aenm.201702267
|
[44] |
Jin H L, Lu H, Wu W Y, et al. Tailoring conductive networks within hollow carbon nanospheres to host phosphorus for advanced sodium ion batteries. Nano Energy, 2020, 70: 104569 doi: 10.1016/j.nanoen.2020.104569
|
[45] |
Liu B, Zhang Q, Li L, et al. Encapsulating red phosphorus in ultralarge pore volume hierarchical porous carbon nanospheres for lithium/sodium-ion half/full batteries. ACS Nano, 2019, 13(11): 13513 doi: 10.1021/acsnano.9b07428
|
[46] |
Xu J, Ding J N, Zhu W J, et al. Nano-structured red phosphorus/porous carbon as a superior anode for lithium and sodium-ion batteries. Sci China Mater, 2018, 61(3): 371 doi: 10.1007/s40843-017-9152-9
|
[47] |
Han L F, Wang J L, Mu X W, et al. Anisotropic, low-tortuosity and ultra-thick red P@C-Wood electrodes for sodium-ion batteries. Nanoscale, 2020, 12(27): 14642 doi: 10.1039/D0NR03059G
|
[48] |
Zhao D, Li B B, Zhang J Y, et al. A hierarchical phosphorus nanobarbed nanowire hybrid: Its structure and electrochemical properties. Nano Lett, 2017, 17(6): 3376 doi: 10.1021/acs.nanolett.6b05301
|
[49] |
Qin G, Duan J, Yang Y, et al. Magnetic field facilitated resilient chain-like Fe3O4/C/red P with superior sodium storage performance. ACS Appl Mater Interfaces, 2018, 10(7): 6441 doi: 10.1021/acsami.7b17341
|
[50] |
Cheng J, Zhang G, Wang P, et al. Confined red phosphorus in edible fungus slag-derived porous carbon as an improved anode material in sodium-ion batteries. ACS Appl Mater Interfaces, 2019, 11(51): 47948 doi: 10.1021/acsami.9b17123
|
[51] |
Sun J, Lee H W, Pasta M, et al. Carbothermic reduction synthesis of red phosphorus-filled 3D carbon material as a high-capacity anode for sodium ion batteries. Energy Storage Mater, 2016, 4: 130 doi: 10.1016/j.ensm.2016.04.003
|
[52] |
Li T Q, Lin N, Han Y, et al. Metallothermic reduction of molten adduct [PCl4+][AlCl4?] at 50 ℃ to amorphous phosphorus or crystallized phosphides. ACS Appl Mater Interfaces, 2018, 10(49): 42469 doi: 10.1021/acsami.8b16481
|
[53] |
Zhu L, Zhu Z, Zhou J, et al. Kirkendall effect modulated hollow red phosphorus nanospheres for high performance sodium-ion battery anodes. Chem Commun (Camb)
|
[54] |
Hu Z F, Lu Y L, Liu M H, et al. Crystalline red phosphorus for selective photocatalytic reduction of CO2 into CO. J Mater Chem A, 2021, 9(1): 338 doi: 10.1039/D0TA09177D
|
[55] |
Hu Z F, Yuan L Y, Liu Z F, et al. An elemental phosphorus photocatalyst with a record high hydrogen evolution efficiency. Angewandte Chemie Int Ed, 2016, 55(33): 9580 doi: 10.1002/anie.201603331
|
[56] |
Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth. Appl Phys Lett, 1964, 4(5): 89 doi: 10.1063/1.1753975
|
[57] |
Wu Y Y, Yang P D. Direct observation of vapor–liquid–solid nanowire growth. J Am Chem Soc, 2001, 123(13): 3165 doi: 10.1021/ja0059084
|
[58] |
Winchester R, Whitby M, Shaffer M. Synthesis of pure phosphorus nanostructures. Angewandte Chemie Int Ed, 2009, 48(20): 3616 doi: 10.1002/anie.200805222
|
[59] |
Liu Y, Hu Z F, Yu J C. Liquid bismuth initiated growth of phosphorus microbelts with efficient charge polarization for photocatalysis. Appl Catal B:Environ, 2019, 247: 100 doi: 10.1016/j.apcatb.2019.01.092
|
[60] |
Liu Q, Zhang X, Wang J H, et al. Crystalline red phosphorus nanoribbons: Large-scale synthesis and electrochemical nitrogen fixation. Angewandte Chemie Int Ed, 2020, 59(34): 14383 doi: 10.1002/anie.202006679
|
[61] |
Zhou J B, Liu X Y, Cai W L, et al. Wet-chemical synthesis of hollow red-phosphorus nanospheres with porous shells as anodes for high-performance lithium-ion and sodium-ion batteries. Adv Mater, 2017, 29(29): 1700214 doi: 10.1002/adma.201700214
|
[62] |
Zhang Y Y, Rui X H, Tang Y X, et al. Wet-chemical processing of phosphorus composite nanosheets for high-rate and high-capacity lithium-ion batteries. Adv Energy Mater, 2016, 6(10): 1502409 doi: 10.1002/aenm.201502409
|
[63] |
Zeng G, Hu X, Zhou B, et al. Engineering graphene with red phosphorus quantum dots for superior hybrid anodes of sodium-ion batteries. Nanoscale, 2017, 9(38): 14722 doi: 10.1039/C7NR05470J
|
[64] |
Zhu J L, Liu Z G, Wang W, et al. Green, template-less synthesis of honeycomb-like porous micron-sized red phosphorus for high-performance lithium storage. ACS Nano, 2021, 15(1): 1880 doi: 10.1021/acsnano.1c00048
|
[65] |
Somayajulu M R, Gautam G K, Rao A S. Stabilisation of red phosphorus to prevent moisture absorption and suppression of phosphine release. Def Sci J, 2007, 57(6): 817 doi: 10.14429/dsj.57.1820
|
[66] |
Chang W C, Tseng K W, Tuan H Y. Solution synthesis of iodine-doped red phosphorus nanoparticles for lithium-ion battery anodes. Nano Lett, 2017, 17(2): 1240 doi: 10.1021/acs.nanolett.6b05081
|
[67] |
Liu S, Xu H, Bian X, et al. Nanoporous red phosphorus on reduced graphene oxide as superior anode for sodium-ion batteries. ACS Nano, 2018, 12(7): 7380 doi: 10.1021/acsnano.8b04075
|
[68] |
Liu S, Xu H, Bian X F, et al. Hollow nanoporous red phosphorus as an advanced anode for sodium-ion batteries. J Mater Chem A, 2018, 6(27): 12992 doi: 10.1039/C8TA03301C
|
[69] |
Santhoshkumar P, Shaji N, Nanthagopal M, et al. Multichannel red phosphorus with a nanoporous architecture: A novel anode material for sodium-ion batteries. J Power Sources, 2020, 470: 228459 doi: 10.1016/j.jpowsour.2020.228459
|
[70] |
Wang F, Zi W, Zhao B X, et al. Facile solution synthesis of red phosphorus nanoparticles for lithium ion battery anodes. Nanoscale Res Lett, 2018, 13(1): 356 doi: 10.1186/s11671-018-2770-4
|
[71] |
Li Y, Jiang S, Qian Y, et al. Amine-induced phase transition from white phosphorus to red/black phosphorus for Li/K-ion storage. Chem Commun (Camb)
|
[72] |
Liu W, Ju S, Yu X. Phosphorus-amine-based synthesis of nanoscale red phosphorus for application to sodium-ion batteries. ACS Nano, 2020, 14(1): 974 doi: 10.1021/acsnano.9b08282
|
[73] |
Liu W, Du L, Ju S, et al. Encapsulation of red phosphorus in carbon nanocages with ultrahigh content for high-capacity and long cycle life sodium-ion batteries. ACS Nano, 2021, 15(3): 5679 doi: 10.1021/acsnano.1c00924
|
[74] |
Jo M, Dragulescu-Andrasi A, Miller L Z, et al. Nucleophilic activation of red phosphorus for controlled synthesis of polyphosphides. Inorg Chem, 2020, 59(8): 5483 doi: 10.1021/acs.inorgchem.0c00108
|
[75] |
Dragulescu-Andrasi A, Miller L Z, Chen B H, et al. Facile conversion of red phosphorus into soluble polyphosphide anions by reaction with potassium ethoxide. Angewandte Chemie Int Ed, 2016, 55(12): 3904 doi: 10.1002/anie.201511186
|