Citation: | LIU Jian-hua, LI Wei, HE Yang, SU Xiao-feng, ZHANG Jie, CHANG Fu-rong. Industrial experimental study on the formation of microbubbles by argon injection into ladle shroud[J]. Chinese Journal of Engineering, 2022, 44(7): 1183-1191. doi: 10.13374/j.issn2095-9389.2021.09.15.009 |
[1] |
劉建華, 張杰, 李康偉. 氣泡去除夾雜物技術研究現狀及發展趨勢. 煉鋼, 2017, 33(2):1
Liu J H, Zhang J, Li K W. Current state and prospect of technologies for removing inclusion by bubbles. Steelmaking, 2017, 33(2): 1
|
[2] |
Liu W J, Lee J, Guo X P, et al. Argon bubble coalescence and breakup in a steel ladle with bottom plugs. Steel Res Int, 2019, 90(4): 1800396 doi: 10.1002/srin.201800396
|
[3] |
Sutherland K L. Physical chemistry of flotation. XI. kinetics of the flotation process. J Phys Chem, 1948, 52(2): 394
|
[4] |
Zhang L, Taniguchi S. Fundamentals of inclusion removal from liquid steel by bubble flotation. Int Mater Rev, 2000, 45(2): 59 doi: 10.1179/095066000101528313
|
[5] |
Rogler J P, Heaslip L J, Mehrvar M. Physical modelling of inclusion removal in a tundish by gas bubbling. Can Metall Q, 2005, 44(3): 357 doi: 10.1179/cmq.2005.44.3.357
|
[6] |
薛正良, 王義芳, 王立濤, 等. 用小氣泡從鋼液中去除夾雜物顆粒. 金屬學報, 2003, 39(4):431 doi: 10.3321/j.issn:0412-1961.2003.04.019
Xue Z L, Wang Y F, Wang L T, et al. Inclusion removal from molten steel by attachment small bubbles. Acta Met Sin, 2003, 39(4): 431 doi: 10.3321/j.issn:0412-1961.2003.04.019
|
[7] |
Zhang J, Liu J H, Yu S J, et al. Bubble growth and floating behavior during degassing process of molten steel/(N2, H2) system. ISIJ Int, 2020, 60(3): 470 doi: 10.2355/isijinternational.ISIJINT-2018-875
|
[8] |
常立忠, 施曉芳, 王建軍, 等. 超聲波功率對電渣鋼錠中氧化鋁夾雜物分布的影響. 過程工程學報, 2015, 15(1):79
Chang L Z, Shi X F, Wang J J, et al. Effect of ultrasonic power on distribution of Al2O3 inclusions in ESR ingots. Chin J Process Eng, 2015, 15(1): 79
|
[9] |
Guo X L, Yu J B, Ren X F, et al. The mechanism of inclusion removal from molten steel by dissolved gas flotation. Ironmak Steelmak, 2018, 45(7): 648 doi: 10.1080/03019233.2017.1317509
|
[10] |
Wang X F, Tang F P, Yao W Z, et al. Novel concept of fine inclusion removal using carbonate powder injection through the ladle shroud. Ironmak Steelmak, 2019, 46(9): 906 doi: 10.1080/03019233.2019.1629778
|
[11] |
Furumai K, Murai T, Aramaki N, et al. Effect of gas flow rate, bubble size and inclusion size on inclusion removal under high throughput conditions using water model experiment. Tetsu-to-Hagane, 2017, 103(9): 517 doi: 10.2355/tetsutohagane.TETSU-2017-014
|
[12] |
張杰, 劉建華, 閆柏軍, 等. 增氮析氮法去除硅錳脫氧鋼中夾雜物的研究. 工程科學學報, 2018, 40(8):937
Zhang J, Liu J H, Yan B J, et al. Nonmetallic inclusion removal of Si-Mn deoxidized steel by nitrogen absorption and release method. Chin J Eng, 2018, 40(8): 937
|
[13] |
Singh P K, Mazumdar D. A physical model study of two-phase gas–liquid flows in a ladle shroud. Metall Mater Trans B, 2018, 49(4): 1945 doi: 10.1007/s11663-018-1297-5
|
[14] |
祝明妹, 周旺, 胡勝波. 中間包長水口吹氣方式對夾雜物去除效果的影響. 材料導報, 2013, 27(18):145
Zhu M M, Zhou W, Hu S B. Effect of bowing methods at long nozzle on inclusions removal. Mater Rev, 2013, 27(18): 145
|
[15] |
樊安源, 文光華, 李敬想, 等. 鋼包長水口內小氣泡形成的研究現狀與展望. 煉鋼, 2015, 31(2):67
Fan A Y, Wen G H, Li J X, et al. Present situation and prospect of fine gas bubbles formation in the ladle shroud. Steelmaking, 2015, 31(2): 67
|
[16] |
Guthrie R, Isac M. Towards forming micro-bubbles in liquid steel // Proceedings of the First Global Conference on Extractive Metallurgy. Ottawa, 2018: 729
|
[17] |
陽祥富, 常文杰, 鐘良才, 等. 連鑄長水口吹氬氣泡行為的試驗研究. 煉鋼, 2018, 34(2):12
Yang X F, Chang W J, Zhong L C, et al. Experiment of bubble behavior in argon blowing through long shroud of continuous casting. Steelmaking, 2018, 34(2): 12
|
[18] |
Bai H, Thomas B G. Bubble formation during horizontal gas injection into downward-flowing liquid. Metall Mater Trans B, 2001, 32(6): 1143 doi: 10.1007/s11663-001-0102-y
|
[19] |
Chang S, Cao X K, Zou Z S. Regimes of micro-bubble formation using gas injection into ladle shroud. Metall Mater Trans B, 2018, 49(3): 953 doi: 10.1007/s11663-018-1231-x
|
[20] |
Chatterjee S, Chattopadhyay K. Physical modeling of slag ‘eye’ in an inert gas-shrouded tundish using dimensional analysis. Metall Mater Trans B, 2016, 47(1): 508 doi: 10.1007/s11663-015-0512-x
|
[21] |
Jin K, Thomas B G, Ruan X M. Modeling and measurements of multiphase flow and bubble entrapment in steel continuous casting. Metall Mater Trans B, 2016, 47(1): 548 doi: 10.1007/s11663-015-0525-5
|
[22] |
Cramb A W, Jimbo I. Interfacial considerations in continuous casting. Iron Steelmaker, 1989, 16(6): 43
|
[23] |
張家蕓. 冶金物理化學. 北京: 冶金工業出版社, 2004
Zhang J Y. Physical Chemistry of Metallurgy. Beijing: Metallurgical Industry Press, 2004
|
[24] |
Valdez M, Shannon G S, Sridhar S. The ability of slags to absorb solid oxide inclusions. ISIJ Int, 2006, 46(3): 450 doi: 10.2355/isijinternational.46.450
|
[25] |
Arai H, Matsumoto K, Shimasaki S I, et al. Model experiment on inclusion removal by bubble flotation accompanied by particle coagulation in turbulent flow. ISIJ Int, 2009, 49(7): 965 doi: 10.2355/isijinternational.49.965
|
[26] |
劉威. 鋼中非金屬夾雜物界面去除過程微觀模型研究[學位論文]. 北京: 北京科技大學, 2020
Liu W. Model Study of Non-Metallic Inclusion Removal through Steel-Slag Interface Micro-Process [Dissertation]. Beijing: University of Science and Technology Beijing, 2020
|