Citation: | WANG Ya-jie, ZUO Hai-bin, WANG Jing-xiu, BAI Kai-kai, CHEN Jian-sheng, RONG Tao. Research status and prospect of clean and high-value utilization of HyperCoal in China[J]. Chinese Journal of Engineering, 2021, 43(12): 1750-1760. doi: 10.13374/j.issn2095-9389.2021.09.15.006 |
[1] |
王永英. 我國燃煤大氣污染物控制現狀及對策研究. 煤炭經濟研究, 2019, 39(8):66
Wang Y Y. Research on current situation and countermeasures of coal-fired air pollutants control in China. Coal Econ Res, 2019, 39(8): 66
|
[2] |
趙利軍. 煤炭除灰技術的現狀和發展. 能源科技, 2021, 19(1):83
Zhao L J. Current situation of coal deashing technology and its development in future. Energy Sci Technol, 2021, 19(1): 83
|
[3] |
張帥. 預處理在低階煤制備無灰煤中的應用[學位論文]. 唐山: 華北理工大學, 2016
Zhang S. The Application of Pre-Treatment in Producing Ash-Free Coal by Low Rank Coals [Dissertation]. Tangshan: North China University of Science and Technology, 2016
|
[4] |
宋璇, 彭垠, 鞏林盛. 化學脫灰在稀缺煉焦煤中煤再選領域的研究與前景探討. 煤炭技術, 2020, 39(8):202
Song X, Peng Y, Gong L S. Research and prospect in coal reprocessing field of chemical deashing in rare coking coal. Coal Technol, 2020, 39(8): 202
|
[5] |
Rahman M, Pudasainee D, Gupta R. Review on chemical upgrading of coal: Production processes, potential applications and recent developments. Fuel Process Technol, 2017, 158: 35 doi: 10.1016/j.fuproc.2016.12.010
|
[6] |
Okuyama N, Komatsu N, Shigehisa T, et al. Hyper-coal process to produce the ash-free coal. Fuel Process Technol, 2004, 85(8-10): 947 doi: 10.1016/j.fuproc.2003.10.019
|
[7] |
楊建校, 魏文杰, 祁勇, 等. 無灰煤高效利用研究進展. 煤炭學報, 2020, 45(9):3301
Yang J X, Wei W J, Qi Y, et al. Research progress on hyper-coal for efficient utilization. J China Coal Soc, 2020, 45(9): 3301
|
[8] |
樊麗華, 梁英華, 侯彩霞. 無灰煤的制備及應用研究進展. 煤炭科學技術, 2011, 39(3):120
Fan L H, Liang Y H, Hou C X. Research progress on ash-free coal preparation and application. Coal Sci Technol, 2011, 39(3): 120
|
[9] |
Kim J P, Choi H K, Chang Y J, et al. Feasibility of using ash-free coal in a solid-oxide-electrolyte direct carbon fuel cell. Int J Hydrog Energy, 2012, 37(15): 11401 doi: 10.1016/j.ijhydene.2012.04.162
|
[10] |
Dudek M, Tomczyk P, Socha R, et al. Use of ash-free “Hyper-coal” as a fuel for a direct carbon fuel cell with solid oxide electrolyte. Int J Hydrog Energy, 2014, 39(23): 12386 doi: 10.1016/j.ijhydene.2014.04.057
|
[11] |
Ju H, Eom J, Lee J K, et al. Durable power performance of a direct ash-free coal fuel cell. Electrochimica Acta, 2014, 115: 511 doi: 10.1016/j.electacta.2013.10.124
|
[12] |
王琦, 程易, 吳昌寧, 等. 新型節能CO2零排放工藝: 化學循環燃燒技術. 化學進展, 2008, 20(10):1612
Wang Q, Cheng Y, Wu C N, et al. A novel energy conservation process for zero emission of carbon dioxide: Chemical looping combustion. Prog Chem, 2008, 20(10): 1612
|
[13] |
Shabani A, Rahman M, Pudasainee D, et al. Evaluation of ash-free coal for chemical looping combustion - part I: Thermogravimetric single cycle study and the reaction mechanism. Can J Chem Eng, 2017, 95(4): 623 doi: 10.1002/cjce.22721
|
[14] |
Shabani A, Rahman M, Pudasainee D, et al. Evaluation of ash-free coal for chemical looping combustion - part II: Thermogravimetric multi-cycle performance. Can J Chem Eng, 2017, 95(5): 832 doi: 10.1002/cjce.22713
|
[15] |
Liu H W, Ni W D, Li Z, et al. Strategic thinking on IGCC development in China. Energy Policy, 2008, 36(1): 1 doi: 10.1016/j.enpol.2007.08.034
|
[16] |
Kong Y J, Kim J, Chun D, et al. Comparative studies on steam gasification of ash-free coals and their original raw coals. Int J Hydrog Energy, 2014, 39(17): 9212 doi: 10.1016/j.ijhydene.2014.04.054
|
[17] |
Park S H, Chung S W, Lee S K, et al. Thermo-economic evaluation of 300 MW class integrated gasification combined cycle with ash free coal (AFC) process. Appl Therm Eng, 2015, 89: 843 doi: 10.1016/j.applthermaleng.2015.06.066
|
[18] |
Sharma A, Kawashima H, Saito I, et al. Structural characteristics and gasification reactivity of chars prepared from K2CO3 mixed HyperCoals and coals. Energy Fuels, 2009, 23(4): 1888 doi: 10.1021/ef800817h
|
[19] |
Sharma A, Saito I, Takanohashi T. Effect of steam partial pressure on gasification rate and gas composition of product gas from catalytic steam gasification of HyperCoal. Energy Fuels, 2009, 23(10): 4887 doi: 10.1021/ef900461w
|
[20] |
Sharma A, Takanohashi T, Morishita K, et al. Low temperature catalytic steam gasification of HyperCoal to produce H2 and synthesis gas. Fuel, 2008, 87(4-5): 491 doi: 10.1016/j.fuel.2007.04.015
|
[21] |
Sharma A, Takanohashi T, Saito I. Effect of catalyst addition on gasification reactivity of HyperCoal and coal with steam at 775-700 ℃. Fuel, 2008, 87(12): 2686 doi: 10.1016/j.fuel.2008.03.010
|
[22] |
Sharma A, Takanohashi T. Controlling the H2/CO ratio of the synthesis gas in a single step by catalytically gasifying coal in a steam and carbon dioxide mixed environment at low temperatures. Energy Fuels, 2010, 24(3): 1745 doi: 10.1021/ef901178d
|
[23] |
Koyano K, Takanohashi T, Saito I. Catalytic hydrogenation of HyperCoal (ashless coal) and reusability of catalyst. Energy Fuels, 2009, 23(7): 3652 doi: 10.1021/ef900135r
|
[24] |
Zou D H, Yang X, Shui H F, et al. Liquefaction of thermal extracts from co-thermal dissolution of a sub-bituminous coal with lignin and reusability of Ni?Mo?S/Al2O3 catalyst. J Fuel Chem Technol, 2019, 47(1): 23 doi: 10.1016/S1872-5813(19)30004-0
|
[25] |
Takanohashi T, Shishido T, Saito I. Effects of HyperCoal addition on coke strength and thermoplasticity of coal blends. Energy Fuels, 2008, 22(3): 1779 doi: 10.1021/ef7007375
|
[26] |
Sekine Y, Fujimoto H. Evaluation of the structure and strength of coke with HPC binder under various preparation conditions. ISIJ Int, 2019, 59(8): 1437 doi: 10.2355/isijinternational.ISIJINT-2018-772
|
[27] |
Sekine Y, Sumomozawa F, Shishido T. Coking technology using heavy oil residue and hyper coal. ISIJ Int, 2014, 54(11): 2446 doi: 10.2355/isijinternational.54.2446
|
[28] |
Hao L F, Feng P, Song W L, et al. Modification performance of Hypercoal as an additive on co-carbonization of coal. J Fuel Chem Technol, 2012, 40(9): 1025 doi: 10.1016/S1872-5813(12)60037-1
|
[29] |
Sharma A, Sakimoto N, Anraku D, et al. Physical and chemical characteristics of coal-binder interface and carbon microstructure near interface. ISIJ Int, 2014, 54(11): 2470 doi: 10.2355/isijinternational.54.2470
|
[30] |
Zhao J, Zuo H B, Wang G W, et al. Improving the coke property through adding HPC extracted from the mixture of low-rank coal and biomass. Energy Fuels, 2020, 34(2): 1802 doi: 10.1021/acs.energyfuels.9b03459
|
[31] |
Wang Y J, Zuo H B, Zhao J, et al. Using HyperCoal to prepare metallurgical coal briquettes via hot-pressing. Int J Miner Metall Mater, 2019, 26(5): 547 doi: 10.1007/s12613-019-1763-3
|
[32] |
Baker D A, Rials T G. Recent advances in low-cost carbon fiber manufacture from lignin. J Appl Polym Sci, 2013, 130(2): 713 doi: 10.1002/app.39273
|
[33] |
Yang J X, Nakabayashi K, Miyawaki J, et al. Preparation of isotropic pitch-based carbon fiber using hyper coal through co-carbonation with ethylene bottom oil. J Ind Eng Chem, 2016, 34: 397 doi: 10.1016/j.jiec.2015.11.026
|
[34] |
Yang J X, Nakabayashi K, Miyawaki J, et al. Preparation of pitch based carbon fibers using Hyper-coal as a raw material. Carbon, 2016, 106: 28 doi: 10.1016/j.carbon.2016.05.019
|
[35] |
Shimanoe H, Mashio T, Nakabayashi K, et al. Manufacturing spinnable mesophase pitch using direct coal extracted fraction and its derived mesophase pitch based carbon fiber. Carbon, 2020, 158: 922 doi: 10.1016/j.carbon.2019.11.082
|
[36] |
Li X, Zhu X Q, Okuda K, et al. Preparation of carbon fibers from low-molecular-weight compounds obtained from low-rank coal and biomass by solvent extraction. New Carbon Mater, 2017, 32(1): 41 doi: 10.1016/S1872-5805(17)60106-9
|
[37] |
Watanabe H, Tsumura T, Toyoda M. EDLC characteristics of carbon materials prepared from coal extract. Electrochemistry, 2020, 88(3): 119 doi: 10.5796/electrochemistry.20-63011
|
[38] |
Zhao X Y, Huang S S, Cao J P, et al. HyperCoal-derived porous carbons with alkaline hydroxides and carbonate activation for electric double-layer capacitors. Fuel Process Technol, 2014, 125: 251 doi: 10.1016/j.fuproc.2014.04.012
|
[39] |
Zhao X Y, Huang S S, Cao J P, et al. KOH activation of a HyperCoal to develop activated carbons for electric double-layer capacitors. J Anal Appl Pyrolysis, 2014, 105: 116 doi: 10.1016/j.jaap.2013.10.010
|
[40] |
樊麗華, 王曉柳, 侯彩霞, 等. 褐煤基活性炭和無灰煤基活性炭性能對比研究. 功能材料, 2017, 48(1):1244 doi: 10.3969/j.issn.1001-9731.2017.01.044
Fan L H, Wang X L, Hou C X, et al. Research on performance comparison of lignite-activated carbon and hypercoal-activated carbon. J Funct Mater, 2017, 48(1): 1244 doi: 10.3969/j.issn.1001-9731.2017.01.044
|
[41] |
Xu L J, Fan L H, Hou C X, et al. Effect of adding microwave absorber on structures and properties of hypercoal-based activated carbons. J Wuhan Univ Technol Mater Sci Ed, 2020, 35(3): 488 doi: 10.1007/s11595-020-2283-8
|
[42] |
安富強, 趙洪量, 程志, 等. 純電動車用鋰離子電池發展現狀與研究進展. 工程科學學報, 2019, 41(1):22
An F Q, Zhao H L, Cheng Z, et al. Development status and research progress of power battery for pure electric vehicles. Chin J Eng, 2019, 41(1): 22
|
[43] |
Zhu Z L, Zuo H B, Li S J, et al. A green electrochemical transformation of inferior coals to crystalline graphite for stable Li-ion storage. J Mater Chem A, 2019, 7(13): 7533 doi: 10.1039/C8TA12412D
|
[44] |
郭秉霖, 侯彩霞, 樊麗華, 等. 萃取溫度對無灰煤結構及煤基活性炭電化學性能的影響. 無機化學學報, 2018, 34(9):1615 doi: 10.11862/CJIC.2018.201
Guo B L, Hou C X, Fan L H, et al. Effect of extraction temperature on hyper-coal structure and electrochemistry of coal-based activated carbon. Chin J Inorg Chem, 2018, 34(9): 1615 doi: 10.11862/CJIC.2018.201
|
[45] |
樊麗華, 杜敬文, 梁英華, 等. 無灰煤的熱解行為及其在配煤中的添加效果. 煤炭科學技術, 2017, 45(3):185
Fan L H, Du J W, Liang Y H, et al. Pyrolysis behavior of hypercoal and its adding effect in blending coal. Coal Sci Technol, 2017, 45(3): 185
|
[46] |
Shui H F, He F, Wu Y, et al. Study on the use of the thermal dissolution soluble fraction from shenfu sub-bituminous coal in coke-making coal blends. Energy Fuels, 2015, 29(3): 1558 doi: 10.1021/ef502736a
|
[47] |
Zhao J, Zuo H B, Wang J S, et al. The mechanism and products for co-thermal extraction of biomass and low-rank coal with NMP. Int J Miner Metall Mater, 2019, 26(12): 1512 doi: 10.1007/s12613-019-1872-z
|
[48] |
Ma Z, Zhuang Y C, Deng Y M, et al. From spent graphite to amorphous sp2+sp3 carbon-coated sp2 graphite for high-performance lithium ion batteries. J Power Sources, 2018, 376: 91
|