Citation: | LI Yu, LIU Yue-ming. Progress and trend of bulk utilization technology of metallurgical solid wastes in China[J]. Chinese Journal of Engineering, 2021, 43(12): 1713-1724. doi: 10.13374/j.issn2095-9389.2021.09.15.003 |
[1] |
World Steel Association. World steel statistics 2021 [EB/OL]. Intennet Online (2021-4-26) [2021-09-10].https://www.worldsteel.org/zh/dam/jcr:976723ed-74b3-47b4-92f6-81b6a452b86e/WSIF_2021_CN.pdf
|
[2] |
The International Aluminium Institute. Alumina production [EB/OL]. Intennet Online (2021-5-26) [2021-09-10].https://www.world-aluminium.org/statistics/alumina-production/#data
|
[3] |
National Bureau of Statistics of the People's Republic of China. Ferroalloy output [EB/OL]. Intennet Online [2021-09-10].https://data.stats.gov.cn/easyquery.htm?cn=A01&zb=A02091B&sj=202105
|
[4] |
賴祥生, 黃紅軍. 銅渣資源化利用技術現狀. 金屬礦山, 2017(11):205 doi: 10.3969/j.issn.1001-1250.2017.11.040
Lai X S, Huang H J. Current status of the comprehensive utilization technology of copper slag. Met Mine, 2017(11): 205 doi: 10.3969/j.issn.1001-1250.2017.11.040
|
[5] |
Xi B D, Li R F, Zhao X Y, et al. Constraints and opportunities for the recycling of growing ferronickel slag in China. Resour Conserv Recycl, 2018, 139: 15 doi: 10.1016/j.resconrec.2018.08.002
|
[6] |
苗希望, 白智韜, 盧光華, 等. 典型鐵合金渣的資源化綜合利用研究現狀與發展趨勢. 工程科學學報, 2020, 42(6):663
Miao X W, Bai Z T, Lu G H, et al. Review of comprehensive utilization of typical ferroalloy slags. Chin J Eng, 2020, 42(6): 663
|
[7] |
劉長波, 彭犇, 夏春, 等. 鋼渣利用及穩定化技術研究進展. 礦產保護與利用, 2018(6):145
Liu C B, Peng B, Xia C, et al. The research progress of steel slag utilization and stabilization technology. Conserv Util Miner Resour, 2018(6): 145
|
[8] |
Vaverka J, Sakurai K. Quantitative determination of free lime amount in steelmaking slag by X-ray diffraction. ISIJ Int, 2014, 54(6): 1334 doi: 10.2355/isijinternational.54.1334
|
[9] |
崔孝煒, 倪文, 任超. 鋼渣礦渣基全固廢膠凝材料的水化反應機理. 材料研究學報, 2017, 31(9):687 doi: 10.11901/1005.3093.2016.741
Cui X W, Ni W, Ren C. Hydration mechanism of all solid waste cementitious materials based on steel slag and blast furnace slag. Chin J Mater Res, 2017, 31(9): 687 doi: 10.11901/1005.3093.2016.741
|
[10] |
Manso J M, Polanco J A, Losa?ez M, et al. Durability of concrete made with EAF slag as aggregate. Cem Concr Compos, 2006, 28(6): 528 doi: 10.1016/j.cemconcomp.2006.02.008
|
[11] |
張碩, 張亮亮. 鋼渣作道路基層材料的研究進展. 第六屆“全國先進混凝土技術及工程應用”研討會論文集. 廣州, 2018: 7
Zhang S, Zhang L L. Research progress of steel slag as road base material // The 6th National Advanced Concrete Technology and Engineering Application Conference. Guangzhou, 2018: 7
|
[12] |
李超, 陳宗武, 謝君, 等. 鋼渣瀝青混凝土技術及其應用研究進展. 材料導報, 2017, 31(3):86
Li C, Chen Z W, Xie J, et al. A technological and applicational review on steel slag asphalt mixture. Mater Rev, 2017, 31(3): 86
|
[13] |
Albertsson G J. Investigations of Stabilization of Cr in Spinel Phase in Chromium-Containing Slags [Dissertation]. Sweden: KTH Royal Institute of Technology, 2011
|
[14] |
中華人民共和國國家統計局. 中國統計年鑒. 北京: 中國統計出版社, 2020
National Bureau of Statistics of People's Republic of China. China Statistical Yearbook. Beijing: China Statistics Press, 2020
|
[15] |
唐山市交通運輸局. 唐山公路通車里程已達1.9萬公里[EB/OL]. (2020-07-08) [2021-09-10]. http://jtysj.tangshan.gov.cn/jiaotong/jiaotongdongtaia/20200708/940654.html
Tangshan City Transportation Bureau. Tangshan highway mileage has reached 19, 000 kilometers [EB/OL]. Intennet Online (2020-07-08) [2021-09-10]. http://jtysj.tangshan.gov.cn/jiaotong/jiaotongdongtaia/ 20200708/940654.html
|
[16] |
Bureau of Transportation Statistics. National transportation statistics [EB/OL]. Intennet Online [2021-09-10].https://www.bts.gov/content/highway-profile
|
[17] |
Statistics Bureau of Japan. Japan statistical yearbook 2021 [EB/OL]. Intennet Online [2021-09-10]. http://www.stat.go.jp/english/data/nenkan/70nenkan/1431-13.html
|
[18] |
USGS. Mcs2021-Cement [EB/OL]. Intennet Online [2021-09-10]. https://pubs.usgs.gov/periodicals/mcs2021/mcs2021-cement.pdf
|
[19] |
唐山水泥網. 唐山市2020年全年生產水泥3454.3萬噸同比增長19.76% [EB/OL]. 網絡在線(2021-1-19) [2021-10-21]. http://www.tssnw.com/news/2362.html
Tangshan Cement Network. Tangshan's annual cement production in 2020 was 34.543 million tons, up 19.76% year on year [EB/OL]. Intennet Online (2021-1-19) [2021-09-10]. http://www.tssnw.com/news/2362.html
|
[20] |
Xue S G, Zhu F, Kong X F, et al. A review of the characterization and revegetation of bauxite residues (red mud). Environ Sci Pollut Res, 2016, 23(2): 1120 doi: 10.1007/s11356-015-4558-8
|
[21] |
Kong X F, Li M, Xue S G, et al. Acid transformation of bauxite residue: Conversion of its alkaline characteristics. J Hazard Mater, 2017, 324: 382 doi: 10.1016/j.jhazmat.2016.10.073
|
[22] |
Zhu X B, Li W, Guan X M. An active dealkalization of red mud with roasting and water leaching. J Hazard Mater, 2015, 286: 85 doi: 10.1016/j.jhazmat.2014.12.048
|
[23] |
房永廣. 高堿赤泥資源化研究及其應用[學位論文]. 武漢: 武漢理工大學, 2010
Fang Y G. Study on High Alkaline Red Mud as Resoures and Its Application [Dissertation]. Wuhan: Wuhan University of Technology, 2010
|
[24] |
劉曉明, 唐彬文, 尹海峰, 等. 赤泥—煤矸石基公路路面基層材料的耐久與環境性能. 工程科學學報, 2018, 40(4):438
Liu X M, Tang B W, Yin H F, et al. Durability and environmental performance of Bayer red mud-coal gangue-based road base material. Chin J Eng, 2018, 40(4): 438
|
[25] |
Zhang N, Li H X, Liu X M. Hydration mechanism and leaching behavior of bauxite-calcination-method red mud-coal gangue based cementitious materials. J Hazard Mater, 2016, 314: 172 doi: 10.1016/j.jhazmat.2016.04.040
|
[26] |
Bayat A, Hassani A, Yousefi A A. Effects of red mud on the properties of fresh and hardened alkali-activated slag paste and mortar. Constr Build Mater, 2018, 167: 775 doi: 10.1016/j.conbuildmat.2018.02.105
|
[27] |
Wang D Q, Wang Q, Huang Z X. Reuse of copper slag as a supplementary cementitious material: Reactivity and safety. Resour Conserv Recycl, 2020, 162: 105037 doi: 10.1016/j.resconrec.2020.105037
|
[28] |
謝仁齊, 黃潤, 趙世翻, 等. 銅渣資源化利用研究進展. 礦產保護與利用, 2020, 40(6):149
Xie R Q, Huang R, Zhao S F, et al. Research progress on resource utilization of copper slag. Conserv Util Miner Resour, 2020, 40(6): 149
|
[29] |
Zhang X F, Ni W, Wu J Y, et al. Hydration mechanism of a cementitious material prepared with Si?Mn slag. Int J Miner Metall Mater, 2011, 18(2): 234 doi: 10.1007/s12613-011-0428-7
|
[30] |
王強, 周予啟, 張增起, 等 綠色混凝土用新型礦物摻合料. 北京: 中國建筑工業出版社, 2018
Wang Q, Zhou Y Q, Zhang Z Q, et al. New Mineral Admixtures for Green Concrete. Beijing: China Building Industry Press, 2018
|
[31] |
鞠麗萍, 陳彥虎, 祝怡斌, 等. 鎳鐵渣在混凝土綜合利用中的環境風險研究. 有色金屬(冶煉部分), 2020(9):106
Ju L P, Chen Y H, Zhu Y B, et al. Environmental risk study on utilization of Ferro-nickel slag in concrete. Nonferrous Met (Extr Metall)
|
[32] |
劉來寶, 張禮華, 唐凱靖. 高碳鉻鐵冶金渣資源化綜合利用技術. 北京: 中國建材工業出版社, 2021
Liu L B, Zhang L H, Tang K J. Comprehensive Utilization Technology of High Carbon Ferrochrome Metallurgical Slag. Beijing: China Building Materials Industry Press, 2021
|
[33] |
黃煒, 羅斌, 李斌, 等. 不同構造形式綠色混凝土疊合板受彎性能試驗. 湖南大學學報(自然科學版), 2019, 46(7):35
Huang W, Luo B, Li B, et al. Experiment on flexural behavior of green concrete composite slab with different structural forms. J Hunan Univ (Nat Sci)
|
[34] |
原材料工業司. 公開征求對《關于推進機制砂石行業高質量發展的若干意見(征求意見稿)》的意見. 中華人民共和國工業和信息化部. (2019-01-30) [2021-9-10].https://www.miit.gov.cn/jgsj/ycls/jzcl/art/2020/art_42e1a6c63b65490daaf1a9155b844909.html
Department of Raw material Industry. Publicly solicit opinions on the "Several opinions on promoting the high-quality development of the sand and stone industry of the mechanism (draft for comments). Ministry of Industry and Information Technology of the People’s Republic of China. (2019-01-30) [2021-9-10]. https://www.miit.gov.cn/jgsj/ycls/jzcl/art/2020/art_42e1a6c63b65490daaf1a9155b844909.html
|
[35] |
The price of machine-made sand has soared, and governments all over the country have strengthened regulation. Commercial Concrete Periodical, 2018(10): 21
|
[36] |
中國砂石協會. “砂”荒!后日起珠三角C25砼價漲至520元每方. 中國沙石骨料網. (2018-07-31) [2021-9-10]. http://www.zgss.org.cn/gongqiuxinxi/2018/5575.html
China Aggregates Association. Sand" shortage! The price of C25 concrete in the Pearl River Delta rose to 520 yuan per square. China Aggresgate Website. (2018-07-31) [2021-9-10]. http://www.zgss.org.cn/gongqiuxinxi/2018/5575.html
|
[37] |
China Aggregates Website. 185 yuan/ton of imported sand has arrived [EB/OL]. Intennet Online (2018-9-6) [2021-10-30]. http://www.zgss.org.cn/zixun/zhuti/5884.html
|
[38] |
向曉東, 唐衛軍, 江新衛, 等. 高強鋼渣陶粒特性試驗研究. 礦產綜合利用, 2018(1):96 doi: 10.3969/j.issn.1000-6532.2018.01.021
Xiang X D, Tang W J, Jiang X W, et al. Experimental investigation of the characteristics of steel slag ceramsite. Multipurp Util Miner Resour, 2018(1): 96 doi: 10.3969/j.issn.1000-6532.2018.01.021
|
[39] |
岳東亭. 利用污泥/赤泥/鋼渣等固體廢物制備新型多孔陶粒的膨脹機理研究[學位論文]. 濟南: 山東大學, 2014
Yue D T. Preparation of Innovative Porous Ceramsite by Sewage Sludge, Red Mud and Steel Slag and the Research of Its Expansion Mechanism [Dissertation]. Jinan: Shandong University, 2014
|
[40] |
高明磊. 利用鋼渣制備陶粒的實驗研究[學位論文]. 沈陽: 東北大學, 2010
Gao M L. Experimental Research on Ceramsite Prepared by Using Steel Slag [Dissertation]. Shenyang: Northeastern University, 2010
|
[41] |
符勇, 馬喆. 基于赤泥、鋁土尾礦和污泥三大工業廢物的陶粒制備實驗研究. 能源與環保, 2017, 39(4):48
Fu Y, Ma Z. Experimental study on ceramsite preparation by using red mud, bauxite tailings and sludge. China Energy Environ Prot, 2017, 39(4): 48
|
[42] |
萬軍, 劉恒波, 宋美, 等. 利用赤泥制備高強陶粒的試驗研究. 礦冶工程, 2011, 31(5):111 doi: 10.3969/j.issn.0253-6099.2011.05.030
Wan J, Liu H B, Song M, et al. Tests on utilization of red mud to prepare high-strength ceramisite. Min Metall Eng, 2011, 31(5): 111 doi: 10.3969/j.issn.0253-6099.2011.05.030
|
[43] |
趙建新, 王林江, 謝襄漓. 利用拜耳法赤泥制備燒脹陶粒的研究. 礦產綜合利用, 2009(4):41 doi: 10.3969/j.issn.1000-6532.2009.04.012
Zhao J X, Wang L J, Xie X L. Preparation of sintering-expanded haydite with red mud from bayer process. Multipurp Util Miner Resour, 2009(4): 41 doi: 10.3969/j.issn.1000-6532.2009.04.012
|
[44] |
Zhao L H, Li Y, Zhang L L, et al. Effects of CaO and Fe2O3 on the microstructure and mechanical properties of SiO2–CaO–MgO–Fe2O3 ceramics from steel slag. ISIJ Int, 2017, 57(1): 15 doi: 10.2355/isijinternational.ISIJINT-2016-064
|
[45] |
Pei D J, Li Y, Cang D Q. In?situ XRD study on sintering mechanism of SiO2?Al2O3?CaO?MgO ceramics from red mud. Mater Lett, 2019, 240: 229 doi: 10.1016/j.matlet.2019.01.019
|
[46] |
王耀忠. 利用鋼渣制備陶瓷燒結磚和透水磚的研究[學位論文]. 北京: 北京科技大學, 2018
Wang Y Z. Study on Preparation of Ceramic Sintered Bricks and Water Permeable Bricks by Steel Slag [Dissertation]. Beijing: University of Science and Technology Beijing, 2018
|
[47] |
王小超, 支楠, 胡杰. 淺談粉煤灰陶粒工藝技術. 磚瓦, 2018(12):74 doi: 10.3969/j.issn.1001-6945.2018.12.019
Wang X C, Zhi N, Hu J. Technology of fly ash ceramsite. Brick-Tile, 2018(12): 74 doi: 10.3969/j.issn.1001-6945.2018.12.019
|
[48] |
李壽德, 支楠, 秦仙景. 我國回轉窯生產陶粒熱耗解析及改進措施. 磚瓦, 2007(5):39 doi: 10.3969/j.issn.1001-6945.2007.05.014
Li S D, Zhi N, Qin X J. Analysis and improvement measures of heat consumption of ceramsite produced by rotary kiln in China. Brick-Tile, 2007(5): 39 doi: 10.3969/j.issn.1001-6945.2007.05.014
|
[49] |
Huang S C, Chang F C, Lo S L, et al. Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash. J Hazard Mater, 2007, 144(1-2): 52 doi: 10.1016/j.jhazmat.2006.09.094
|
[50] |
鄧宏衛. 輕質高強粉煤灰陶粒的制備及其混凝土性能[學位論文]. 哈爾濱: 哈爾濱工業大學, 2009
Deng H W. Preparation of High-Strength Lightweight Lytag and Its Concrete Performance [Dissertation]. Harbin: Harbin Institute of Technology, 2009
|
[51] |
李宇, 姚長青. 一種利用含熱值原料的陶粒燒制及副產余熱的窯爐系統及方法: 中國專利, CN112880394A. 2021-06-01
Li Y, Yao C Q. Kiln System and Method for Firing Ceramsite Containing Calorific Value Raw Materials and Producing Waste Heat as Byproduct: China Patent, CN112880394A. 2021-06-01
|
[52] |
姚長青, 李宇, 鄭靈棋, 等. 一種燒制陶粒的隧道窯系統及陶粒燒制方法: 中國專利, CN112050631A. 2020-12-08
Yao C Q, Li Y, Zheng L Q, et al. Tunnel Kiln System for Firing Ceramsite and Ceramsite Firing Method: China Patent, CN112050631A. 2020-12-08
|
[53] |
Badiee H, Maghsoudipour A, Dehkordi B R. Use of Iranian steel slag for production of ceramic floor tiles. Adv Appl Ceram, 2008, 107(2): 111 doi: 10.1179/174367608X263377
|
[54] |
Furlani E, Tonello G, Maschio S. Recycling of steel slag and glass cullet from energy saving lamps by fast firing production of ceramics. Waste Manag, 2010, 30(8-9): 1714 doi: 10.1016/j.wasman.2010.03.030
|
[55] |
Zhao L H, Li Y, Zhou Y Y, et al. Preparation of novel ceramics with high CaO content from steel slag. Mater Des, 2014, 64: 608 doi: 10.1016/j.matdes.2014.08.015
|
[56] |
Ai X B, Liu X M, GU X M, et al. Effect of steel slag content on the performance of traditional ceramics system // 2013 International Conference on Renewable Energy and Environmental Materials. Chengdu, 2013: 602
|
[57] |
Pei D J, Li Y, Cang D Q. Na+-solidification behavior of SiO2?Al2O3?CaO?MgO (10wt%) ceramics prepared from red mud. Ceram Int, 2017, 43(18): 16936 doi: 10.1016/j.ceramint.2017.09.098
|
[58] |
Xu X H, Song J, Li Y, et al. The microstructure and properties of ceramic tiles from solid wastes of Bayer red muds. Constr Build Mater, 2019, 212: 266 doi: 10.1016/j.conbuildmat.2019.03.280
|
[59] |
He H T, Yue Q Y, Qi Y F, et al. The effect of incorporation of red mud on the properties of clay ceramic bodies. Appl Clay Sci, 2012, 70: 67 doi: 10.1016/j.clay.2012.09.022
|
[60] |
蘇青, 謝紅波, 陳哲, 等. 鎳鐵渣和錫尾礦共摻制備陶瓷磚的研究. 廣東建材, 2020, 36(3):1 doi: 10.3969/j.issn.1009-4806.2020.03.002
Su Q, Xie H B, Chen Z, et al. Study on preparation of ceramic tiles by co-mixing nickel-iron slag and tin tailings. Guangdong Build Mater, 2020, 36(3): 1 doi: 10.3969/j.issn.1009-4806.2020.03.002
|
[61] |
李宇, 任育鵬, 裴德健. 一種鎳鐵渣陶瓷及其制備方法: 中國專利, CN107935555B. 2020-08-07
Li Y, Ren Y P, Pei D J. Ferro-Nickel Slag Ceramic and Preparation Method There: China Patent, CN107935555B. 2020-08-07
|
[62] |
Li Y, Ren Y P, Pei D J, et al. Mechanism of pore formation in novel porous permeable ceramics prepared from steel slag and bauxite tailings. ISIJ Int, 2019, 59(9): 1723 doi: 10.2355/isijinternational.ISIJINT-2018-782
|
[63] |
裴德健. 利用冶金渣制備硅鈣基多元體系陶瓷的機理及應用研究[學位論文]. 北京: 北京科技大學, 2019
Pei D J. Study on the Mechanism and Application of Si-Ca Multicomponent Ceramics Prepared from Metallurgical Slags [Dissertation]. Beijing: University of Science and Technology Beijing, 2019
|
[64] |
戴曉天, 齊淵洪, 張春霞. 熔融鋼鐵渣干式粒化和顯熱回收技術的進展. 鋼鐵研究學報, 2008, 20(7):1
Dai X T, Qi Y H, Zhang C X. Development of molten slag dry granulation and heat recovery in steel industry. J Iron Steel Res, 2008, 20(7): 1
|
[65] |
王海風, 張春霞, 齊淵洪, 等. 高爐渣處理技術的現狀和新的發展趨勢. 鋼鐵, 2007, 42(6):83 doi: 10.3321/j.issn:0449-749X.2007.06.019
Wang H F, Zhang C X, Qi Y H, et al. Present situation and development trend of blast furnace slag treatment. Iron Steel, 2007, 42(6): 83 doi: 10.3321/j.issn:0449-749X.2007.06.019
|
[66] |
Qin Y L, Lü X, Bai C G, et al. Waste heat recovery from blast furnace slag by chemical reactions. JOM, 2012, 64(8): 997 doi: 10.1007/s11837-012-0392-3
|
[67] |
Li Y, Cang D Q. Preparing high value-added materials directly from melting slag // The 27th International Conference on Solid Waste Technology and Management. Philadelphia, 2012(3): 2A14
|
[68] |
Li Y, Dai W B. Modifying hot slag and converting it into value-added materials: A review. J Clean Prod, 2018, 175: 176 doi: 10.1016/j.jclepro.2017.11.171
|
[69] |
Drissen P, Ehrenberg A, Kühn M, et al. Recent development in slag treatment and dust recycling. Steel Res Int, 2009, 80(10): 737
|
[70] |
盧翔, 李宇, 馬帥, 等. 利用顯熱對熔渣進行直接改質的熱平衡分析及試驗驗證. 工程科學學報, 2016, 38(10):1386
Lu X, Li Y, Ma S, et al. Thermal equilibrium analysis and experiment of molten slag modification by use of its sensible heat. Chin J Eng, 2016, 38(10): 1386
|
[71] |
馬帥, 李宇, 張玲玲, 等. 堿度變化對電爐渣含鐵組分回收率的影響規律. 鋼鐵, 2017, 52(4):78
Ma S, Li Y, Zhang L L, et al. Effects of EAF slag basicity on its recovery rate of iron components. Iron Steel, 2017, 52(4): 78
|
[72] |
黃世爍, 郭敏, 張梅. 酸性氧化物對轉爐鋼渣的改性作用. 鋼鐵研究學報, 2015, 27(11):38
Huang S S, Guo M, Zhang M. Modification of converter slag with acidic oxides. J Iron Steel Res, 2015, 27(11): 38
|
[73] |
Li Y, Meng X Y, Chen K Y, et al. Crystallization behaviors of spinel during cooling process of modified EAF slag. Metall Mater Trans B, 2020, 51(3): 1027 doi: 10.1007/s11663-020-01802-2
|
[74] |
Mudersbach D, Drissen P, Motz H. Improved slag qualities by liquid slag treatment // The 2nd International Slag Valorization Symposium. Leuven, 2011: 299
|
[75] |
Mudersbach D, Kühn M, Geisler J, et al. Chrome immobilisation in EAF-slags from high-alloy steelmaking: tests at FEhS institute and development of an operational slag treatment process // Proceedings of the 1st International Slag Valorisation Symposium. Leuven, 2009: 101
|
[76] |
Dai W B, Li Y, Cang D Q, et al. Research on a novel modifying furnace for converting hot slag directly into glass-ceramics. J Clean Prod, 2018, 172: 169 doi: 10.1016/j.jclepro.2017.10.039
|
[77] |
Pioro L S, Pioro I L. Reprocessing of metallurgical slag into materials for the building industry. Waste Manag, 2004, 24(4): 371 doi: 10.1016/S0956-053X(03)00071-0
|
[78] |
王清濤, 黃幼榕, 李要輝, 等. 高爐熱態熔渣的調質處理方法: 中國專利, CN103555874A. 2014-02-05
Wang Q T, Huang Y R, Li Y H, et al. Thermal Refining Method of Blast Furnace Hot Slags: China Patent, CN103555874A. 2014-02-05
|
[79] |
Zhang W T, He F, Xie J L, et al. Crystallization mechanism and properties of glass ceramics from modified molten blast furnace slag. J Non Cryst Solids, 2018, 502: 164 doi: 10.1016/j.jnoncrysol.2018.08.024
|
[80] |
程金樹, 湯李纓, 王全, 等. 鋼渣微晶玻璃的研究. 武漢工業大學學報, 1995, 17(4):1
Cheng J S, Tang L Y, Wang Q, et al. Investigation of a slag glass-ceramics. J Wuhan Univ Technol, 1995, 17(4): 1
|
[81] |
Zhao G Z, Li Y, Dai W B, et al. Crystallization mechanism and properties of high basicity steel slag-derived glass-ceramics. J Ceram Soc Japan, 2016, 124(3): 247 doi: 10.2109/jcersj2.15218
|
[82] |
李宇, 伊耀東, 陳奎元, 等. 冶金熔渣混合制備微晶玻璃的組成及性能優化. 工程科學學報, 2019, 41(10):1288
Li Y, Yi Y D, Chen K Y, et al. Optimization of performance and composition for glass ceramics prepared from mixing molten slags. Chin J Eng, 2019, 41(10): 1288
|
[83] |
賈寶志, 常原勇, 任康民, 等. 錳渣制作鑄石的工藝研究. 鐵合金, 2010, 41(5):33 doi: 10.3969/j.issn.1001-1943.2010.05.010
Jia B Z, Chang Y Y, Ren K M, et al. Technical research on making cast stone with manganese slag. Ferro-Alloys, 2010, 41(5): 33 doi: 10.3969/j.issn.1001-1943.2010.05.010
|
[84] |
Chen K Y, Li Y, Meng L, et al. Preparation of glass-ceramic from titanium-bearing blast furnace slag by “petrurgic” method // TMS 2018 Annual Meeting & Exhibition. Phoenix, 2018: 415
|
[85] |
Francis A A, Rawlings R D, Boccaccini A R. Glass-ceramics from mixtures of coal ash and soda-lime glass by the petrurgic method. J Mater Sci Lett, 2002, 21(12): 975 doi: 10.1023/A:1016094211224
|
[86] |
Bisio G. Energy recovery from molten slag and exploitation of the recovered energy. Energy, 1997, 22(5): 501 doi: 10.1016/S0360-5442(96)00149-1
|
[87] |
Barati M, Esfahani S, Utigard T A. Energy recovery from high temperature slags. Energy, 2011, 36(9): 5440 doi: 10.1016/j.energy.2011.07.007
|