Citation: | LI Gang, PAN Wei-jie, LI Min, ZHU Li-long, HE Sheng-ping. Effect of Al2O3 on the physical and chemical properties of ultrahigh-basicity continuous casting mold flux[J]. Chinese Journal of Engineering, 2023, 45(2): 234-242. doi: 10.13374/j.issn2095-9389.2021.09.07.003 |
[1] |
張少達. 高錳高鋁鋼保護渣潤滑、結晶和輻射傳熱性能的研究[學位論文]. 重慶大學, 2019
Zhang S D. Study on Properties of Lubrication, Crystallization and Radiation Heat Transfer of Continuous Casting Mold Fluxes for High-Mn and High-Al Steels [Dissertation]. Chongqing: Chongqing University, 2019
|
[2] |
張江. Al2O3含量對CaO?SiO2?Al2O3?CaF2?Na2O保護渣結晶性能的影響. 鑄造技術, 2011, 32(4):511
Zhang J. Influence of the Al2O3 content on the crystallization properties of CaO?SiO2?Al2O3?CaF2?Na2O mold fluxes. Foundry Technol, 2011, 32(4): 511
|
[3] |
盧艷青, 張國棟, 姜茂發, 等. 連鑄保護渣吸附Al2O3夾雜能力的研究. 東北大學學報(自然科學版), 2010, 31(4):539 doi: 10.3969/j.issn.1005-3026.2010.04.021
Lu Y Q, Zhang G D, Jiang M F, et al. Study on adsorbility of mould flux to Al2O3 inclusion. J Northeast Univ Nat Sci, 2010, 31(4): 539 doi: 10.3969/j.issn.1005-3026.2010.04.021
|
[4] |
王玉, 楊吉春. 堿度和Al2O3對中碳鋼寬厚板連鑄結晶器保護渣粘度和熔化溫度的影響. 內蒙古科技大學學報, 2012, 31(4):320
Wang Y, Yang J C. Effect of basicity and Al2O3 content on viscosity and melting temperature of mold flux of medium carbon steel in wide and heavy plate continuous casting. J Inn Mong Univ Sci Technol, 2012, 31(4): 320
|
[5] |
Sridhar S, Mills K C, Afrange O D C, et al. Break temperatures of mould fluxes and their relevance to continuous casting. Ironmak Steelmak, 2000, 27(3): 238 doi: 10.1179/030192300677534
|
[6] |
He Y M, Wang Q, Hu B, et al. Application of high-basicity mould fluxes for continuous casting of large steel slabs. Ironmak Steelmak, 2016, 43(8): 588 doi: 10.1080/03019233.2016.1139224
|
[7] |
龍瀟. 包晶鋼連鑄保護渣渣膜凝固結構特征研究[學位論文]. 重慶: 重慶大學, 2018
Long X. Study on Structure Characteristics of Solid Slag Films of Mold Fluxes for Peritectic Steel Continuous Casting [Dissertation]. Chongqing: Chongqing University, 2018
|
[8] |
Zhang S D, Li M, Zhu L L, et al. Effect of substituting Na2O for SiO2 on the non-isothermal crystallization behavior of CaO?BaO?Al2O3 based mold fluxes for casting high Al steels. Ceram Int, 2019, 45(9): 11296 doi: 10.1016/j.ceramint.2019.02.206
|
[9] |
朱禮龍. 包晶鋼用超高堿度保護渣的理論研究和應用[學位論文]. 重慶: 重慶大學, 2018
Zhu L L. Theoretical Research and Application of Ultrahigh-Basicity Mold Fluxes for Peritectic Steel [Dissertation]. Chongqing: Chongqing University, 2018
|
[10] |
Jia B, Li M, Wang S, et al. Molecular dynamic simulation of the structure and viscosity properties of CaO–SiO2–Al2O3 slags with low basicity//The 10th Pacific Rim International Conference on Advanced Materials and Processing. Xi'an, 2019
|
[11] |
Diao J, Zhou W, Gu P. Competitive growth of crystals in vanadium–chromium slag. CrystEngComm, 2016, 18(33): 6272 doi: 10.1039/C6CE01087C
|
[12] |
舒俊, 金山同, 張麗, 等. 冷卻速率對連鑄保護渣結晶性能的影響. 北京科技大學學報, 2001, 23(5):421 doi: 10.3321/j.issn:1001-053X.2001.05.009
Shu J, Jin S T, Zhang L, et al. Influence of cooling rate on crystallization properties of mold fluxes. J Univ Sci Technol Beijing, 2001, 23(5): 421 doi: 10.3321/j.issn:1001-053X.2001.05.009
|
[13] |
舒俊, 金山同, 張麗, 等. 連鑄結晶器保護渣結晶溫度. 北京科技大學學報, 2000, 22(6):508 doi: 10.3321/j.issn:1001-053X.2000.06.006
Shu J, Jin S T, Zhang L, et al. Crystallization temperature of continuous casting mold fluxes. J Univ Sci Technol Beijing, 2000, 22(6): 508 doi: 10.3321/j.issn:1001-053X.2000.06.006
|
[14] |
Shi C B, Seo M D, Wang H, et al. Crystallization kinetics and mechanism of CaO–Al2O3-based mold flux for casting high-aluminum TRIP steels. Metall Mater Trans B, 2015, 46(1): 345 doi: 10.1007/s11663-014-0180-2
|
[15] |
Lanyi M D, Rosa C J. Viscosity of casting fluxes used during continuous casting of steel. Metall Trans B, 1981, 12(2): 287 doi: 10.1007/BF02654462
|
[16] |
Mizuno H, Esaka H, Shinozuka K, et al. Analysis of the crystallization of mold flux for continuous casting of steel. ISIJ Int, 2008, 48(3): 277 doi: 10.2355/isijinternational.48.277
|
[17] |
Lu B X, Wang W L. Effects of fluorine and BaO on the crystallization behavior of lime–alumina-based mold flux for casting high-Al steels. Metall Mater Trans B, 2015, 46(2): 852 doi: 10.1007/s11663-014-0285-7
|
[18] |
Long X, He S P, Xu J F, et al. Properties of high basicity mold fluxes for peritectic steel slab casting. J Iron Steel Res Int, 2012, 19(7): 39 doi: 10.1016/S1006-706X(12)60111-3
|
[19] |
Nakada H, Nagata K. Crystallization of CaO–SiO2–TiO2 slag as a candidate for fluorine free mold flux. ISIJ Int, 2006, 46(3): 441 doi: 10.2355/isijinternational.46.441
|
[20] |
Park J Y, Ryu J W, Sohn I. In-situ crystallization of highly volatile commercial mold flux using an isolated observation system in the confocal laser scanning microscope. Metall Mater Trans B, 2014, 45(4): 1186 doi: 10.1007/s11663-014-0087-y
|
[21] |
Mutale C T, Cramb A W, Claudon T. Observation of the crystallization hehavior of a slag contain 46 wt pct CaO, 46 wt pct SiO2, 6 wt pct Al2O3, and 2 wt pct Na2O using the double hot thermocouple technique. Metall Mater Trans B, 2005, 36(3): 417 doi: 10.1007/s11663-005-0072-6
|
[22] |
Zhu L L, Wang Q, Wang Q Q, et al. The relationship between crystallization and break temperature of mould flux. Ironmak Steelmak, 2019, 46(9): 865 doi: 10.1080/03019233.2018.1552773
|
[23] |
Miodownik A P, Saunders N. Modelling of materials properties in duplex stainless steels. Mater Sci Technol, 2002, 18(8): 861 doi: 10.1179/026708302225004694
|
[24] |
Lu B X, Chen K, Wang W L, et al. Effects of Li2O and Na2O on The crystallization behavior of Lime-Alumina-based mold flux for casting high-Al steels. Metall Mater Trans B, 2014, 45(4): 1496 doi: 10.1007/s11663-014-0063-6
|
[25] |
Zhu L L, Wang Q, Wang Q Q, et al. In situ observation of crystallization of mold slag using a digital optical microscope in an infrared furnace. J Am Ceram Soc, 2018: jace.16085 doi: 10.1111/jace.16085
|