Citation: | HUANG Hai-feng, LIU Pei-sen, LI Qing, YU Xin-bo. Review: Intelligent control and human-robot interaction for collaborative robots[J]. Chinese Journal of Engineering, 2022, 44(4): 780-791. doi: 10.13374/j.issn2095-9389.2021.08.31.001 |
[1] |
He W, Li Z J, Chen C L P. A survey of human-centered intelligent robots: Issues and challenges. IEEE/CAA J Autom Sin, 2017, 4(4): 602 doi: 10.1109/JAS.2017.7510604
|
[2] |
Baraglia J, Cakmak M, Nagai Y, et al. Efficient human-robot collaboration: When should a robot take initiative? Int J Robotics Res, 2017, 36(5-7): 563
|
[3] |
Ajoudani A, Zanchettin A M, Ivaldi S, et al. Progress and prospects of the human-robot collaboration. Auton Robots, 2018, 42(5): 957 doi: 10.1007/s10514-017-9677-2
|
[4] |
Dhome M, Richetin M, Lapreste J T, et al. Determination of the attitude of 3D objects from a single perspective view. IEEE Trans Pattern Anal Mach Intell, 1989, 11(12): 1265 doi: 10.1109/34.41365
|
[5] |
Dementhon D F, Davis L S. Model-based object pose in 25 lines of code. Int J Comput Vis, 1995, 15(1-2): 123 doi: 10.1007/BF01450852
|
[6] |
Larouche B P, Zhu Z H. Autonomous robotic capture of non-cooperative target using visual servoing and motion predictive control. Auton Robots, 2014, 37(2): 157 doi: 10.1007/s10514-014-9383-2
|
[7] |
李樹春, 張靜, 張華, 等. 面向機器人抓取過程中目標位姿估計方法. 傳感器與微系統, 2019, 38(7):32
Li S C, Zhang J, Zhang H, et al. Object pose estimation method for robot grasping process. Transducer Microsyst Technol, 2019, 38(7): 32
|
[8] |
李寶全, 方勇純, 張雪波. 基于2D三焦點張量的移動機器人視覺伺服鎮定控制. 自動化學報, 2014, 40(12):2706
Li B Q, Fang Y C, Zhang X B. 2D trifocal tensor based visual servo regulation of nonholonomic mobile robots. Acta Autom Sin, 2014, 40(12): 2706
|
[9] |
Ke F, Li Z J, Xiao H Z, et al. Visual servoing of constrained mobile robots based on model predictive control. IEEE Trans Syst Man Cybern:Syst, 2017, 47(7): 1428 doi: 10.1109/TSMC.2016.2616486
|
[10] |
Zhang X T, Fang Y C, Zhang X B, et al. Dynamic image-based output feedback control for visual servoing of multirotors. IEEE Trans Ind Inform, 2020, 16(12): 7624 doi: 10.1109/TII.2020.2974485
|
[11] |
Malis E, Chaumette F. 2 1/2 D visual servoing with respect to unknown objects through a new estimation scheme of camera displacement. Int J Comput Vis, 2000, 37(1): 79 doi: 10.1023/A:1008181530296
|
[12] |
He Z X, Wu C R, Zhang S Y, et al. Moment-based 2.5-D visual servoing for textureless planar part grasping. IEEE Trans Ind Electron, 2019, 66(10): 7821
|
[13] |
Prats M, Sanz P J, del Pobil A P. Vision-tactile-force integration and robot physical interaction // 2009 IEEE International Conference on Robotics and Automation. Kobe, 2009: 3975
|
[14] |
Ilonen J, Bohg J, Kyrki V. Fusing visual and tactile sensing for 3-D object reconstruction while grasping // 2013 IEEE International Conference on Robotics and Automation. Karlsruhe, 2013: 3547
|
[15] |
Alt N, Steinbach E. Navigation and manipulation planning using a visuo-haptic sensor on a mobile platform. IEEE Trans Instrum Meas, 2014, 63(11): 2570 doi: 10.1109/TIM.2014.2315734
|
[16] |
Wang S X, Wu J J, Sun X Y, et al. 3D shape perception from monocular vision, touch, and shape priors // 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, 2018: 1606
|
[17] |
Li J H, Dong S Y, Adelson E. Slip detection with combined tactile and visual information // 2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane, 2018: 7772
|
[18] |
Zheng W D, Liu H P, Sun F C. Lifelong visual-tactile cross-modal learning for robotic material perception. IEEE Trans Neural Netw Learn Syst, 2021, 32(3): 1192 doi: 10.1109/TNNLS.2020.2980892
|
[19] |
Yu X B, He W, Li Q, et al. Human-robot co-carrying using visual and force sensing. IEEE Trans Ind Electron, 2021, 68(9): 8657 doi: 10.1109/TIE.2020.3016271
|
[20] |
Karason S P, Annaswamy A M. Adaptive control in the presence of input constraints. IEEE Trans Autom Control, 1994, 39(11): 2325 doi: 10.1109/9.333787
|
[21] |
Gao W Z, Selmic R R. Neural network control of a class of nonlinear systems with actuator saturation. IEEE Trans Neural Netw, 2006, 17(1): 147 doi: 10.1109/TNN.2005.863416
|
[22] |
Chen M, Ge S S, Ren B B. Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints. Automatica, 2011, 47(3): 452 doi: 10.1016/j.automatica.2011.01.025
|
[23] |
Chen M, Ge S S, How B V E. Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities. IEEE Trans Neural Netw, 2010, 21(5): 796 doi: 10.1109/TNN.2010.2042611
|
[24] |
He W, Li Z, Dong Y, et al. Design and adaptive control for an upper limb robotic exoskeleton in presence of input saturation. IEEE Trans Neural Netw Learn Syst, 2018, 30(1): 97
|
[25] |
鄭文昊, 賈英民. 具有狀態約束與輸入飽和的全向移動機器人自適應跟蹤控制. 工程科學學報, 2019, 41(9):1176
Zheng W H, Jia Y M. Adaptive tracking control for omnidirectional mobile robots with full-state constraints and input saturation. Chin J Eng, 2019, 41(9): 1176
|
[26] |
Spong M W. Modeling and control of elastic joint robots. J Dyn Syst Meas Control, 1987, 109(4): 310 doi: 10.1115/1.3143860
|
[27] |
Chen G R, Desages A, Julian P. Trajectory tracking and robust stability for a class of time-delayed flexible-joint robotic manipulators. Int J Control, 1997, 68(2): 259 doi: 10.1080/002071797223596
|
[28] |
Chang Y C, Wu M F. Robust tracking control for a class of flexible-joint time-delay robots using only position measurements. Int J Syst Sci, 2016, 47(14): 3336 doi: 10.1080/00207721.2015.1129677
|
[29] |
Li H Y, Zhao S Y, He W, et al. Adaptive finite-time tracking control of full state constrained nonlinear systems with dead-zone. Automatica, 2019, 100: 99 doi: 10.1016/j.automatica.2018.10.030
|
[30] |
Zhang Z K, Duan G R, Hou M Z. Robust adaptive dynamic surface control of uncertain non-linear systems with output constraints. IET Control Theory Appl, 2017, 11(1): 110 doi: 10.1049/iet-cta.2016.0456
|
[31] |
Kostarigka A K, Doulgeri Z, Rovithakis G A. Prescribed performance tracking for flexible joint robots with unknown dynamics and variable elasticity. Automatica, 2013, 49(5): 1137 doi: 10.1016/j.automatica.2013.01.042
|
[32] |
Guo T, Wu X W. Backstepping control for output-constrained nonlinear systems based on nonlinear mapping. Neural Comput Appl, 2014, 25(7-8): 1665 doi: 10.1007/s00521-014-1650-9
|
[33] |
Meng W C, Yang Q M, Si J, et al. Adaptive neural control of a class of output-constrained nonaffine systems. IEEE Trans Cybern, 2016, 46(1): 85 doi: 10.1109/TCYB.2015.2394797
|
[34] |
Wang M, Yang A L. Dynamic learning from adaptive neural control of robot manipulators with prescribed performance. IEEE Trans Syst Man Cybern:Syst, 2017, 47(8): 2244 doi: 10.1109/TSMC.2016.2645942
|
[35] |
Wang M, Wang C, Shi P, et al. Dynamic learning from neural control for strict-feedback systems with guaranteed predefined performance. IEEE Trans Neural Netw Learn Syst, 2016, 27(12): 2564 doi: 10.1109/TNNLS.2015.2496622
|
[36] |
Tee K P, Ge S S, Tay E H. Barrier Lyapunov Functions for the control of output-constrained nonlinear systems. Automatica, 2009, 45(4): 918 doi: 10.1016/j.automatica.2008.11.017
|
[37] |
Liu Y J, Tong S C, Chen C L P, et al. Adaptive NN control using integral barrier Lyapunov functionals for uncertain nonlinear block-triangular constraint systems. IEEE Trans Cybern, 2017, 47(11): 3747 doi: 10.1109/TCYB.2016.2581173
|
[38] |
He W, Chen Y H, Yin Z. Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Trans Cybern, 2016, 46(3): 620 doi: 10.1109/TCYB.2015.2411285
|
[39] |
Liu Y, Chen X B, Mei Y F, et al. Observer-based boundary control for an asymmetric output-constrained flexible robotic manipulator. Sci China Inf Sci, 2021, 65(3): 1
|
[40] |
Atkeson C G, An C H, Hollerbach J M. Estimation of inertial parameters of manipulator loads and links. Int J Robotics Res, 1986, 5(3): 101 doi: 10.1177/027836498600500306
|
[41] |
徐征, 張弓, 汪火明, 等. 基于深度循環神經網絡的協作機器人動力學誤差補償. 工程科學學報, 2021, 43(7):995
Xu Z, Zhang G, Wang H M, et al. Error compensation of collaborative robot dynamics based on deep recurrent neural network. Chin J Eng, 2021, 43(7): 995
|
[42] |
Han H G, Qiao J F, Bo Y C. On structure design for RBF neural network based on information strength. Acta Autom Sin, 2012, 38(7): 1083 doi: 10.3724/SP.J.1004.2012.01083
|
[43] |
Narendra K S, Parthasarathy K. Identification and control of dynamical systems using neural networks. IEEE Trans Neural Netw, 1990, 1(1): 4 doi: 10.1109/72.80202
|
[44] |
Yang C G, Jiang Y M, Li Z J, et al. Neural control of bimanual robots with guaranteed global stability and motion precision. IEEE Trans Ind Inform, 2017, 13(3): 1162 doi: 10.1109/TII.2016.2612646
|
[45] |
He W, Dong Y T, Sun C Y. Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Trans Syst Man Cybern:Syst, 2016, 46(3): 334 doi: 10.1109/TSMC.2015.2429555
|
[46] |
Ding L, Li S, Gao H B, et al. Adaptive partial reinforcement learning neural network-based tracking control for wheeled mobile robotic systems. IEEE Trans Syst Man Cybern:Syst, 2020, 50(7): 2512 doi: 10.1109/TSMC.2018.2819191
|
[47] |
Huang P F, Wang D K, Meng Z J, et al. Impact dynamic modeling and adaptive target capturing control for tethered space robots with uncertainties. IEEE/ASME Trans Mechatron, 2016, 21(5): 2260 doi: 10.1109/TMECH.2016.2569466
|
[48] |
He W, Dong Y T. Adaptive fuzzy neural network control for a constrained robot using impedance learning. IEEE Trans Neural Netw Learn Syst, 2018, 29(4): 1174 doi: 10.1109/TNNLS.2017.2665581
|
[49] |
Liu C X, Wen G L, Zhao Z J, et al. Neural-network-based sliding-mode control of an uncertain robot using dynamic model approximated switching gain. IEEE Trans Cybern, 2021, 51(5): 2339 doi: 10.1109/TCYB.2020.2978003
|
[50] |
Dong Y T, Ren B B. UDE-based variable impedance control of uncertain robot systems. IEEE Trans Syst Man Cybern:Syst, 2019, 49(12): 2487 doi: 10.1109/TSMC.2017.2767566
|
[51] |
Sun L, Zheng Z W. Finite-time sliding mode trajectory tracking control of uncertain mechanical systems. Asian J Control, 2017, 19(1): 399 doi: 10.1002/asjc.1377
|
[52] |
Zhang Y H, Sun J, Liang H J, et al. Event-triggered adaptive tracking control for multiagent systems with unknown disturbances. IEEE Trans Cybern, 2020, 50(3): 890 doi: 10.1109/TCYB.2018.2869084
|
[53] |
Sun C Y, He W, Hong J. Neural network control of a flexible robotic manipulator using the lumped spring-mass model. IEEE Trans Syst Man Cybern:Syst, 2017, 47(8): 1863 doi: 10.1109/TSMC.2016.2562506
|
[54] |
Kim M J, Beck F, Ott C, et al. Model-free friction observers for flexible joint robots with torque measurements. IEEE Trans Robotics, 2019, 35(6): 1508 doi: 10.1109/TRO.2019.2926496
|
[55] |
Chen J H, Qiao H. Muscle-synergies-based neuromuscular control for motion learning and generalization of a musculoskeletal system. IEEE Trans Syst Man Cybern:Syst, 2021, 51(6): 3993 doi: 10.1109/TSMC.2020.2966818
|
[56] |
那靖, 張超, 王嫻, 等. 基于未知系統動態估計的機器人預設性能控制. 控制與決策, 2021, 36(5):1040
Na J, Zhang C, Wang X, et al. Unknown system dynamics estimator for prescribed performance control of robotic systems. Control Decis, 2021, 36(5): 1040
|
[57] |
Yuan M X, Chen Z, Yao B, et al. Fast and accurate motion tracking of a linear motor system under kinematic and dynamic constraints: An integrated planning and control approach. IEEE Trans Control Syst Technol, 2021, 29(2): 804 doi: 10.1109/TCST.2019.2955658
|
[58] |
Lozano R, Brogliato B. Adaptive hybrid force-position control for redundant manipulators // 29th IEEE Conference on Decision and Control. Honolulu, 1990: 1949
|
[59] |
Hogan N. Impedance Control: An Approach to Manipulation // 1984 American Control Conference. San Diego, 1984: 304
|
[60] |
Jung S, Hsia T C, Bonitz R G. On robust impedance force control of robot manipulators // Proceedings of International Conference on Robotics and Automation. Albuquerque, 1997: 2057
|
[61] |
Xu G Z, Song A G, Li H J. Adaptive impedance control for upper-limb rehabilitation robot using evolutionary dynamic recurrent fuzzy neural network. J Intell Robotic Syst, 2011, 62(3-4): 501 doi: 10.1007/s10846-010-9462-3
|
[62] |
Yang C G, Ganesh G, Haddadin S, et al. Human-like adaptation of force and impedance in stable and unstable interactions. IEEE Trans Robotics, 2011, 27(5): 918 doi: 10.1109/TRO.2011.2158251
|
[63] |
Ficuciello F, Villani L, Siciliano B. Variable impedance control of redundant manipulators for intuitive human–robot physical interaction. IEEE Trans Robotics, 2015, 31(4): 850 doi: 10.1109/TRO.2015.2430053
|
[64] |
Li X, Liu Y H, Yu H Y. Iterative learning impedance control for rehabilitation robots driven by series elastic actuators. Automatica, 2018, 90: 1 doi: 10.1016/j.automatica.2017.12.031
|
[65] |
Sun T R, Peng L, Cheng L, et al. Composite learning enhanced robot impedance control. IEEE Trans Neural Netw Learn Syst, 2020, 31(3): 1052 doi: 10.1109/TNNLS.2019.2912212
|
[66] |
Li Z J, Huang B, Ajoudani A, et al. Asymmetric bimanual control of dual-arm exoskeletons for human-cooperative manipulations. IEEE Trans Robotics, 2018, 34(1): 264 doi: 10.1109/TRO.2017.2765334
|
[67] |
Li Z J, Huang B, Ye Z F, et al. Physical human–robot interaction of a robotic exoskeleton by admittance control. IEEE Trans Ind Electron, 2018, 65(12): 9614 doi: 10.1109/TIE.2018.2821649
|
[68] |
Sadrfaridpour B, Wang Y. Collaborative assembly in hybrid manufacturing cells: An integrated framework for human–robot interaction. IEEE Trans Autom Sci Eng, 2018, 15(3): 1178 doi: 10.1109/TASE.2017.2748386
|
[69] |
Peternel L, Tsagarakis N, Ajoudani A. A human–robot co-manipulation approach based on human sensorimotor information. IEEE Trans Neural Syst Rehabilitation Eng, 2017, 25(7): 811 doi: 10.1109/TNSRE.2017.2694553
|
[70] |
He W, Li J S, Yan Z C, et al. Bidirectional human-robot bimanual handover of big planar object with vertical posture. IEEE Trans Autom Sci Eng, 3480, PP(99): 1
|
[71] |
Corteville B, Aertbelien E, Bruyninckx H, et al. Human-inspired robot assistant for fast point-to-point movements // 2007 IEEE International Conference on Robotics and Automation. Rome, 2007: 3639
|
[72] |
Huang J, Huo W G, Xu W X, et al. Control of upper-limb power-assist exoskeleton using a human-robot interface based on motion intention recognition. IEEE Trans Autom Sci Eng, 2015, 12(4): 1257 doi: 10.1109/TASE.2015.2466634
|
[73] |
Medina J R, Lawitzky M, M?rtl A, et al. An experience-driven robotic assistant acquiring human knowledge to improve haptic cooperation // 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, 2011: 2416
|
[74] |
Wakita K, Huang J, Di P, et al. Human-walking-intention-based motion control of an omnidirectional-type cane robot. IEEE/ASME Trans Mechatron, 2013, 18(1): 285 doi: 10.1109/TMECH.2011.2169980
|
[75] |
Peternel L, Tsagarakis N, Ajoudani A. Towards multi-modal intention interfaces for human-robot co-manipulation // 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon, 2016: 2663
|
[76] |
Warrier R B, Devasia S. Iterative learning from novice human demonstrations for output tracking. IEEE Trans Hum Mach Syst, 2016, 46(4): 510 doi: 10.1109/THMS.2016.2545243
|
[77] |
Mainprice J, Hayne R, Berenson D. Goal set inverse optimal control and iterative replanning for predicting human reaching motions in shared workspaces. IEEE Trans Robotics, 2016, 32(4): 897 doi: 10.1109/TRO.2016.2581216
|
[78] |
Li Y N, Ge S S. Human–robot collaboration based on motion intention estimation. IEEE/ASME Trans Mechatron, 2014, 19(3): 1007 doi: 10.1109/TMECH.2013.2264533
|
[79] |
Li Y N, Tee K P, Yan R, et al. A framework of human–robot coordination based on game theory and policy iteration. IEEE Trans Robotics, 2016, 32(6): 1408 doi: 10.1109/TRO.2016.2597322
|
[80] |
Cohn D A, Ghahramani Z, Jordan M I. Active learning with statistical models. J Artif Intell Res, 1996, 4: 129 doi: 10.1613/jair.295
|
[81] |
Calinon S, Pistillo A, Caldwell D G. Encoding the time and space constraints of a task in explicit-duration Hidden Markov Model // 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, 2011: 3413
|
[82] |
Park D W, Kwon J, Lee K M. Robust visual tracking using autoregressive hidden Markov Model // 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, 2012: 1964
|
[83] |
Calinon S, Li Z B, Alizadeh T, et al. Statistical dynamical systems for skills acquisition in humanoids // 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012). Osaka, 2012: 323
|
[84] |
Wiest J, H?ffken M, Kre?el U, et al. Probabilistic trajectory prediction with Gaussian mixture models // 2012 IEEE Intelligent Vehicles Symposium. Madrid, 2012: 141
|
[85] |
Wang J M, Fleet D J, Hertzmann A. Gaussian process dynamical models for human motion. IEEE Trans Pattern Anal Mach Intell, 2008, 30(2): 283 doi: 10.1109/TPAMI.2007.1167
|
[86] |
Wang Y W, Sheng Y X, Wang J, et al. Optimal collision-free robot trajectory generation based on time series prediction of human motion. IEEE Robotics Autom Lett, 2018, 3(1): 226 doi: 10.1109/LRA.2017.2737486
|
[87] |
Huang Z, Hasan A, Shin K, et al. Long-term pedestrian trajectory prediction using mutable intention filter and warp LSTM. IEEE Robotics Autom Lett, 2021, 6(2): 542 doi: 10.1109/LRA.2020.3047731
|
[88] |
曾超, 楊辰光, 李強, 等. 人–機器人技能傳遞研究進展. 自動化學報, 2019, 45(10):1813
Zeng C, Yang C G, Li Q, et al. Research progress on human-robot skill transfer. Acta Autom Sin, 2019, 45(10): 1813
|
[89] |
Khansari-Zadeh S M, Billard A. Learning stable nonlinear dynamical systems with Gaussian mixture models. IEEE Trans Robotics, 2011, 27(5): 943 doi: 10.1109/TRO.2011.2159412
|
[90] |
Paraschos A, Daniel C, Peters J, et al. Using probabilistic movement primitives in robotics. Auton Robots, 2018, 42(3): 529 doi: 10.1007/s10514-017-9648-7
|
[91] |
Rozo L, Calinon S, Caldwell D G, et al. Learning physical collaborative robot behaviors from human demonstrations. IEEE Trans Robotics, 2016, 32(3): 513 doi: 10.1109/TRO.2016.2540623
|
[92] |
Wang P, Zhu J X, Feng W, et al. Robot learning from human demonstration of peg-in-hole task // 2018 IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). Tianjin, 2018: 318
|
[93] |
Ijspeert A J, Nakanishi J, Hoffmann H, et al. Dynamical movement primitives: Learning attractor models for motor behaviors. Neural Comput, 2013, 25(2): 328 doi: 10.1162/NECO_a_00393
|
[94] |
Kulvicius T, Ning K J, Tamosiunaite M, et al. Joining movement sequences: Modified dynamic movement primitives for robotics applications exemplified on handwriting. IEEE Trans Robotics, 2012, 28(1): 145 doi: 10.1109/TRO.2011.2163863
|
[95] |
Colomé A, Torras C. Dimensionality reduction for dynamic movement primitives and application to bimanual manipulation of clothes. IEEE Trans Robotics, 2018, 34(3): 602 doi: 10.1109/TRO.2018.2808924
|
[96] |
Yang C G, Zeng C, Fang C, et al. A DMPs-based framework for robot learning and generalization of humanlike variable impedance skills. IEEE/ASME Trans Mechatron, 2018, 23(3): 1193 doi: 10.1109/TMECH.2018.2817589
|
[97] |
Rückert E, d'Avella A. Learned parametrized dynamic movement primitives with shared synergies for controlling robotic and musculoskeletal systems. Front Comput Neurosci, 2013, 7: 138
|
[98] |
Deni?a M, Gams A, Ude A, et al. Learning compliant movement primitives through demonstration and statistical generalization. IEEE/ASME Trans Mechatron, 2016, 21(5): 2581 doi: 10.1109/TMECH.2015.2510165
|
[99] |
Si W Y, Wang N, Yang C G. Composite dynamic movement primitives based on neural networks for human-robot skill transfer. Neural Comput Appl, 2021: 1
|
[100] |
Lu Z Y, Wang N, Yang C G. A constrained DMPs framework for robot skills learning and generalization from human demonstrations. IEEE/ASME Trans Mechatron, 7022, PP(99): 1
|
[101] |
Arulkumaran K, Deisenroth M P, Brundage M, et al. Deep reinforcement learning: A brief survey. IEEE Signal Process Mag, 2017, 34(6): 26 doi: 10.1109/MSP.2017.2743240
|
[102] |
Pastor P, Kalakrishnan M, Chitta S, et al. Skill learning and task outcome prediction for manipulation // 2011 IEEE International Conference on Robotics and Automation. Shanghai, 2011: 3828
|
[103] |
Kormushev P, Calinon S, Caldwell D G. Robot motor skill coordination with EM-based Reinforcement Learning // 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei, 2010: 3232
|
[104] |
Kormushev P, Calinon S, Saegusa R, et al. Learning the skill of archery by a humanoid robot iCub // 2010 10th IEEE-RAS International Conference on Humanoid Robots. Nashville, 2010: 417
|
[105] |
Rosenstein M T, Barto A G, van Emmerik R E A. Learning at the level of synergies for a robot weightlifter. Robotics Auton Syst, 2006, 54(8): 706 doi: 10.1016/j.robot.2006.03.002
|
[106] |
Abbeel P, Ng A Y. Apprenticeship learning via inverse reinforcement learning // Proceedings of the Twenty-First International Conference on Machine Learning. Banff, 2004: 1
|
[107] |
Ziebart B D, Maas A L, Bagnell J A, et al. Maximum entropy inverse reinforcement learning // Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence. Chicago, 2008: 1433
|
[108] |
Levine S, Popovic Z, Koltun V. Feature construction for inverse reinforcement learning // 2010 Conference and Workshop on Neural Information Processing Systems. Vancouver, 2010, 23: 1342
|
[109] |
Ratliff N, Bradley D, Bagnell J A, et al. Boosting structured prediction for imitation learning // 2006 Conference of the Proceedings International on Neural Information Processing Systems. Vancouver, 2006: 1153
|
[110] |
Krishnan S, Garg A, Liaw R, et al. SWIRL: A sequential windowed inverse reinforcement learning algorithm for robot tasks with delayed rewards. Int J Robotics Res, 2019, 38(2-3): 126 doi: 10.1177/0278364918784350
|
[111] |
Ho J, Ermon S. Generative adversarial imitation learning // 30th Conference on Neural Information Processing Systems (NIPS 2016). Barcelona, 2016: 4565
|