Citation: | XU Rong-li, GUO Tian-kui, QU Zhan-qing, CHEN Ming, QIN Jian-hua, MOU Shan-bo, CHEN Huan-peng, ZHANG Yue-long. Numerical simulation of fractured imbibition in a shale oil reservoir based on the discrete fracture model[J]. Chinese Journal of Engineering, 2022, 44(3): 451-463. doi: 10.13374/j.issn2095-9389.2021.08.30.007 |
[1] |
胥云, 雷群, 陳銘, 等. 體積改造技術理論研究進展與發展方向. 石油勘探與開發, 2018, 45(5):874
Xu Y, Lei Q, Chen M, et al. Progress and development of volume stimulation techniques. Petroleum Explor Dev, 2018, 45(5): 874
|
[2] |
Denney D. Thirty years of gas-shale fracturing: What have we learned? J Petroleum Technol, 2010, 62(11): 88
|
[3] |
Makhanov K, Dehghanpour H, Kuru E. An experimental study of spontaneous imbibition in Horn River shales // SPE Canadian Unconventional Resources Conference. Alberta, 2012
|
[4] |
Dehghanpour H, Zubair H A, Chhabra A, et al. Liquid intake of organic shales. Energy Fuels, 2012, 26(9): 5750 doi: 10.1021/ef3009794
|
[5] |
Pagels M, Hinkel J J, Willberg D M. Measuring capillary pressure tells more than pretty pictures // SPE International Symposium and Exhibition on Formation Damage Control. Louisiana, 2012: SPE-151729-MS
|
[6] |
Cheng Y. Impact of water dynamics in fractures on the performance of hydraulically fractured wells in gas-shale reservoirs. J Can Pet Technol, 2012, 51(2): 143
|
[7] |
Wang M Y, Leung J Y. Numerical investigation of coupling multiphase flow and geomechanical effects on water loss during hydraulic-fracturing flowback operation. SPE Reserv Eval Eng, 2016, 19(3): 520 doi: 10.2118/178618-PA
|
[8] |
Meng M M, Ge H K, Ji W M, et al. Investigation on the variation of shale permeability with spontaneous imbibition time: Sandstones and volcanic rocks as comparative study. J Nat Gas Sci Eng, 2015, 27: 1546 doi: 10.1016/j.jngse.2015.10.019
|
[9] |
Wang S, Javadpour F, Feng Q H. Confinement correction to mercury intrusion capillary pressure of shale nanopores. Sci Rep, 2016, 6: 20160 doi: 10.1038/srep20160
|
[10] |
張濤, 李相方, 楊立峰, 等. 關井時機對頁巖氣井返排率和產能的影響. 天然氣工業, 2017, 37(8):48 doi: 10.3787/j.issn.1000-0976.2017.08.006
Zhang T, Li X F, Yang L F, et al. Effects of shut-in timing on flowback rate and productivity of shale gas wells. Nat Gas Ind, 2017, 37(8): 48 doi: 10.3787/j.issn.1000-0976.2017.08.006
|
[11] |
Dehghanpour H, Lan Q, Saeed Y, et al. Spontaneous imbibition of brine and oil in gas shales: Effect of water adsorption and resulting microfractures. Energy Fuels, 2013, 27(6): 3039 doi: 10.1021/ef4002814
|
[12] |
楊柳. 壓裂液在頁巖儲層中的吸收及其對工程的影響[學位論文]. 北京: 中國石油大學(北京), 2016
Yang L. Fracturing Fluid Imbibition into Gas Shale and Its Impact on Engineering [Dissertation]. Beijing: China University of Petroleum (Beijing), 2016
|
[13] |
Zhou Z. The Impact of Capillary Imbibition and Osmosis During Hydraulic Fracturing of Shale Formations. Colorado: ProQuest Dissertations Publishing, 2015
|
[14] |
Fakcharoenphol P, Torcuk M, Bertoncello A, et al. Managing shut-in time to enhance gas flow rate in hydraulic fractured shale reservoirs: a simulation study // SPE Annual Technical Conference and Exhibition. New Orleans, 2013: SPE-166098-MS
|
[15] |
Fakcharoenphol P, Kurtoglu B, Kazemi H, et al. The effect of osmotic pressure on improve oil recovery from fractured shale formations // SPE Unconventional Resources Conference. The Woodlands, 2014: SPE-168998-MS
|
[16] |
王飛, 潘子晴. 化學勢差驅動下的頁巖儲集層壓裂液返排數值模擬. 石油勘探與開發, 2016, 43(6):971
Wang F, Pan Z Q. Numerical simulation of chemical potential dominated fracturing fluid flowback in hydraulically fractured shale gas reservoirs. Petroleum Explor Dev, 2016, 43(6): 971
|
[17] |
Almulhim A, Alharthy N, Tutuncu A N, et al. Impact of imbibition mechanism on flowback behavior: a numerical study // Abu Dhabi International Petroleum Exhibition and Conference. Abu Dhabi, 2014: SPE-171799-MS
|
[18] |
王家祿, 劉玉章, 陳茂謙, 等. 低滲透油藏裂縫動態滲吸機理實驗研究. 石油勘探與開發, 2009, 36(1):86 doi: 10.3321/j.issn:1000-0747.2009.01.011
Wang J L, Liu Y Z, Chen M Q, et al. Experimental study on dynamic imbibition mechanism of low permeability reservoirs. Petroleum Explor Dev, 2009, 36(1): 86 doi: 10.3321/j.issn:1000-0747.2009.01.011
|
[19] |
朱維耀, 岳明, 劉昀楓, 等. 中國致密油藏開發理論研究進展. 工程科學學報, 2019, 41(9):1103
Zhu W Y, Yue M, Liu Y F, et al. Research progress on tight oil exploration in China. Chin J Eng, 2019, 41(9): 1103
|
[20] |
Zhang T, Li X F, Li J, et al. Numerical investigation of the well shut-in and fracture uncertainty on fluid-loss and production performance in gas-shale reservoirs. J Nat Gas Sci Eng, 2017, 46: 421 doi: 10.1016/j.jngse.2017.08.024
|
[21] |
Wang F, Pan Z Q, Zhang Y C, et al. Simulation of coupled hydro-mechanical-chemical phenomena in hydraulically fractured gas shale during fracturing-fluid flowback. J Petroleum Sci Eng, 2018, 163: 16 doi: 10.1016/j.petrol.2017.12.029
|
[22] |
Wang X H, Li L, Wang M, et al. A discrete fracture model for two-phase flow involving the capillary pressure discontinuities in fractured porous media. Adv Water Resour, 2020, 142: 103607 doi: 10.1016/j.advwatres.2020.103607
|
[23] |
Li Z K, Cao W D, Liu Z F, et al. The advanced embedded discrete fracture model considering the capillary pressure difference. J Por Media, 2020, 23(10): 969 doi: 10.1615/JPorMedia.2020034976
|
[24] |
Zhang K N, Woodbury A D. A Krylov finite element approach for multi-species contaminant transport in discretely fractured porous media. Adv Water Resour, 2002, 25(7): 705 doi: 10.1016/S0309-1708(02)00084-2
|
[25] |
Takeda M, Hiratsuka T, Ito K, et al. Development and application of chemical osmosis simulator based on TOUGH2 // 2012 TOUGH2 Symposium of Lawrence Berkeley National Laboratory Berkeley. California, 2012: 1
|
[26] |
Fritz S J. Ideality of clay membranes in osmotic processes: A review. Clays Clay Miner, 1986, 34(2): 214 doi: 10.1346/CCMN.1986.0340212
|
[27] |
Guo T K, Wang X Z, Li Z, et al. Numerical simulation study on fracture propagation of zipper and synchronous fracturing in hydrogen energy development. Int J Hydrog Energy, 2019, 44(11): 5270 doi: 10.1016/j.ijhydene.2018.08.072
|
[28] |
朱維耀, 馬東旭, 朱華銀, 等. 頁巖儲層應力敏感性及其對產能影響. 天然氣地球科學, 2016, 27(5):892 doi: 10.11764/j.issn.1672-1926.2016.05.0892
Zhu W Y, Ma D X, Zhu H Y, et al. Stress sensitivity of shale gas reservoir and its influence on productivity. Nat Gas Geosci, 2016, 27(5): 892 doi: 10.11764/j.issn.1672-1926.2016.05.0892
|
[29] |
Ghorayeb K, Firoozabadi A. Numerical study of natural convection and diffusion in fractured porous media. SPE J, 2000, 5(1): 12 doi: 10.2118/51347-PA
|
[30] |
Ma T R, Xu H, Guo C B, et al. A discrete fracture modeling approach for analysis of coalbed methane and water flow in a fractured coal reservoir. Geofluids, 2020, 2020: 1
|
[31] |
張慶福, 黃朝琴, 姚軍, 等. 基于多尺度混合有限元的離散裂縫兩相滲流數值模擬. 科學通報, 2017, 62(13):1392 doi: 10.1360/N972016-00584
Zhang Q F, Huang Z Q, Yao J, et al. Two-phase numerical simulation of discrete fracture model based on multiscale mixed finite element method. Chin Sci Bull, 2017, 62(13): 1392 doi: 10.1360/N972016-00584
|
[32] |
黃朝琴, 高博, 王月英, 等. 基于模擬有限差分法的離散裂縫模型兩相流動模擬. 中國石油大學學報(自然科學版), 2014, 38(6):97
Huang Z Q, Gao B, Wang Y Y, et al. Two-phase flow simulation of discrete fracture model using a novel mimetic finite difference method. J China Univ Pet, 2014, 38(6): 97
|
[33] |
鄭民, 李建忠, 吳曉智, 等. 致密儲集層原油充注物理模擬——以準噶爾盆地吉木薩爾凹陷二疊系蘆草溝組為例. 石油勘探與開發, 2016, 43(2):219
Zheng M, Li J Z, Wu X Z, et al. Physical modeling of oil charging in tight reservoirs: A case study of Permian Lucaogou Formation in Jimsar Sag, Junggar Basin, NW China. Pet Explor Dev, 2016, 43(2): 219
|
[34] |
孫兵, 劉立峰, 丁江輝. 致密油水平井產能主控地質因素研究. 特種油氣藏, 2017, 24(2):115 doi: 10.3969/j.issn.1006-6535.2017.02.023
Sun B, Liu L F, Ding J H. Main geologic factors controlling the productivity of horizontal wells in tight oil reservoirs. Special Oil Gas Reserv, 2017, 24(2): 115 doi: 10.3969/j.issn.1006-6535.2017.02.023
|
[35] |
Schlemmer R, Friedheim J E, Growcock F B, et al. Chemical osmosis, shale, and drilling fluids. SPE Drill Complet, 2003, 18(4): 318 doi: 10.2118/86912-PA
|