<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
RUAN Zhu-en, WU Ai-xiang, WANG Yi-ming, WANG Shao-yong, WANG Jian-dong. Multiple response optimization of key performance indicators of cemented paste backfill of total solid waste[J]. Chinese Journal of Engineering, 2022, 44(4): 496-503. doi: 10.13374/j.issn2095-9389.2021.08.15.001
Citation: RUAN Zhu-en, WU Ai-xiang, WANG Yi-ming, WANG Shao-yong, WANG Jian-dong. Multiple response optimization of key performance indicators of cemented paste backfill of total solid waste[J]. Chinese Journal of Engineering, 2022, 44(4): 496-503. doi: 10.13374/j.issn2095-9389.2021.08.15.001

Multiple response optimization of key performance indicators of cemented paste backfill of total solid waste

doi: 10.13374/j.issn2095-9389.2021.08.15.001
More Information
  • Corresponding author: E-mail: wuaixiang@126.com
  • Received Date: 2021-08-15
    Available Online: 2021-10-19
  • Publish Date: 2022-04-02
  • Tailings and waste rock produced in metal mines are the most common industrial solid wastes all over the world, resulting in serious environmental and safety issues. Cemented paste backfill (CPB) is widely used for tailings management and stope treatment. CPB of total solid waste (TSW-CPB) was proposed on the basis of CPB of full-tailings. In the TSW-CPB process, thickened full-tailings, waste rock, and slag are mixed to prepare a paste that is filled into the stope. TSW-CPB can avoid the collapse of a stope, failure of the tailings storage facility, and landslide of a waste-rock yard, achieving the goal of “total waste to cure three harms.” The effects of solid fraction (SF), waste rock dosage (WRD), and glue powder dosage (GPD) on the slump (S), yield stress (τ0), uniaxial compressive strength (UCS), and bleeding rate (BR) were investigated through orthogonal experiments. According to the scope of technical indicators specified in the National Standard of the People’s Republic of China “Technical specification for the total tailings paste backfill (GB/T 39489—2020),” the overall desirability function approach was used to conduct multiple response optimization of key TSW-CPB performance indicators. TSW-CPB was shown to have similar fluidity, transportation performance, mechanical properties, and bleeding performance to the CPB of full-tailings. The SF, WRD, and GPD affect the S, τ0, UCS, and BR of TSW-CPB considerably. The SF has the most important influence on S and τ0, while GPD has the most substantial impact on UCS and BR. Multiple response optimization yielded SF = 79.31%, WRD = 18.86%, and GPD = 3:20, with S = 25.45 cm, τ0 = 100.49 Pa, UCS = 3.55 MPa, and BR = 1.50% as the corresponding responses. The optimal results can provide references for practical application, and the overall desirability function approach can be used in other mines to optimize multi objective CPB.

     

  • loading
  • [1]
    吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517

    Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517
    [2]
    Qi C C, Fourie A. Cemented paste backfill for mineral tailings management: Review and future perspectives. Miner Eng, 2019, 144: 106025 doi: 10.1016/j.mineng.2019.106025
    [3]
    Wu A X, Ruan Z E, Bürger R, et al. Optimization of flocculation and settling parameters of tailings slurry by response surface methodology. Miner Eng, 2020, 156: 106488 doi: 10.1016/j.mineng.2020.106488
    [4]
    吳愛祥, 楊瑩, 王貽明, 等. 深錐濃密機底流濃度模型及動態壓密機理分析. 工程科學學報, 2018, 40(2):152

    Wu A X, Yang Y, Wang Y M, et al. Mathematical modelling of underflow concentration in a deep cone thickener and analysis of the dynamic compaction mechanism. Chin J Eng, 2018, 40(2): 152
    [5]
    Wang Y, Wu A X, Ruan Z E, et al. Reconstructed rheometer for direct monitoring of dewatering performance and torque in tailings thickening process. Int J Miner Metall Mater, 2020, 27(11): 1430 doi: 10.1007/s12613-020-2116-y
    [6]
    Yang L H, Wang H J, Wu A X, et al. Shear thinning and thickening of cemented paste backfill. Appl Rheol, 2019, 29(1): 80 doi: 10.1515/arh-2019-0008
    [7]
    李雪, 李翠平, 顏丙恒, 等. 基于離散元的膏體攪拌影響因素分析. 金屬礦山, 2021, 3:19

    Li X, Li C P, Yan B H, et al. Analysis of the influence factors of paste stirring based on discrete element method. Met Mine, 2021, 3: 19
    [8]
    楊柳華, 王洪江, 吳愛祥, 等. 全尾砂膏體攪拌剪切過程的觸變性. 工程科學學報, 2016, 38(10):1343

    Yang L H, Wang H J, Wu A X, et al. Thixotropy of unclassified pastes in the process of stirring and shearing. Chin J Eng, 2016, 38(10): 1343
    [9]
    劉曉輝, 吳愛祥, 姚建, 等. 膏體尾礦管內滑移流動阻力特性及其近似計算方法. 中國有色金屬學報, 2019, 29(10):2403

    Liu X H, Wu A X, Yao J, et al. Resistance characteristic and approximate calculation of paste tailings slip flow inside pipe. Chin J Nonferrous Met, 2019, 29(10): 2403
    [10]
    Cheng H Y, Wu S C, Li H, et al. Influence of time and temperature on rheology and flow performance of cemented paste backfill. Constr Build Mater, 2020, 231: 117117 doi: 10.1016/j.conbuildmat.2019.117117
    [11]
    Liu L, Fang Z Y, Qi C C, et al. Numerical study on the pipe flow characteristics of the cemented paste backfill slurry considering hydration effects. Powder Technol, 2019, 343: 454 doi: 10.1016/j.powtec.2018.11.070
    [12]
    Qi C C, Chen Q S, Fourie A, et al. Pressure drop in pipe flow of cemented paste backfill: Experimental and modeling study. Powder Technol, 2018, 333: 9 doi: 10.1016/j.powtec.2018.03.070
    [13]
    Deng X J, Zhang J X, Klein B, et al. Experimental characterization of the influence of solid components on the rheological and mechanical properties of cemented paste backfill. Int J Miner Process, 2017, 168: 116 doi: 10.1016/j.minpro.2017.09.019
    [14]
    Wu A X, Wang Y, Wang H J, et al. Coupled effects of cement type and water quality on the properties of cemented paste backfill. Int J Miner Process, 2015, 143: 65 doi: 10.1016/j.minpro.2015.09.004
    [15]
    Jiang H Q, Fall M, Cui L. Freezing behaviour of cemented paste backfill material in column experiments. Constr Build Mater, 2017, 147: 837 doi: 10.1016/j.conbuildmat.2017.05.002
    [16]
    Cao S, Zheng D, Yilmaz E, et al. Strength development and microstructure characteristics of artificial concrete pillar considering fiber type and content effects. Constr Build Mater, 2020, 256: 119408 doi: 10.1016/j.conbuildmat.2020.119408
    [17]
    薛亞洲, 王海軍, 湯家軒, 等. 中國礦產資源節約與綜合利用報告. 北京: 地質出版社, 2015

    Xue Y Z, Wang H J, Tang J X, et al. The Report of Saving & Comprehensive Utilization in China. Beijing: Geological Publishing House, 2015
    [18]
    姚華輝, 蔡練兵, 劉維, 等. 我國金屬礦山廢石資源化綜合利用現狀與發展. 中國有色金屬學報, 2021, 31(6):1649

    Yao H H, Cai L B, Liu W, et al. Current status and development of comprehensive utilization of waste rock in metal mines in China. Chin J Nonferrous Met, 2021, 31(6): 1649
    [19]
    王洪江, 吳愛祥, 肖衛國, 等. 粗粒級膏體充填的技術進展及存在的問題. 金屬礦山, 2009(11):1

    Wang H J, Wu A X, Xiao W G, et al. The progresses of coarse paste fill technology and its existing problem. Met Mine, 2009(11): 1
    [20]
    張修香, 喬登攀, 孫宏生. 廢石?尾砂高濃度料漿管道輸送特性模擬. 中國有色金屬學報, 2019, 29(5):1092

    Zhang X X, Qiao D P, Sun H S. Simulation on conveying characteristics in pipe about high-density slurry with waste rock-tailing. Chin J Nonferrous Met, 2019, 29(5): 1092
    [21]
    李紅, 吳愛祥, 王洪江, 等. 粗粒級膏體充填材料靜動態抗離析性能表征. 中南大學學報(自然科學版), 2016, 47(11):3909

    Li H, Wu A X, Wang H J, et al. Static and dynamic anti-segregation property characterization of coarse-grained paste backfill slurry. J Central South Univ Sci Technol, 2016, 47(11): 3909
    [22]
    Sun W, Wang H J, Hou K P. Control of waste rock-tailings paste backfill for active mining subsidence areas. J Clean Prod, 2018, 171: 567 doi: 10.1016/j.jclepro.2017.09.253
    [23]
    吳愛祥, 姜關照, 王貽明. 礦山新型充填膠凝材料概述與發展趨勢. 金屬礦山, 2018, 3:1

    Wu A X, Jiang G Z, Wang Y M. Review and development trend of new type filling cementing materials in mines. Met Mine, 2018, 3: 1
    [24]
    國家市場監督管理總局. GB/T39489—2020 全尾砂膏體充填技術規范. 北京: 中國標準出版社, 2020

    General Administration of Quality Supervision, People's Republic of China. GB/T39489—2020 Technical Specification for the Total Tailings Paste Backfill. Beijing: Standards Press of China, 2020
    [25]
    楊柳華, 王洪江, 吳愛祥, 等. 全尾砂戈壁集料膏體充填粒級優化. 中國有色金屬學報, 2016, 26(7):1552

    Yang L H, Wang H J, Wu A X, et al. Gradation optimization of unclassified tailings paste with Gobi aggregates. Chin J Nonferrous Met, 2016, 26(7): 1552
    [26]
    Durgun M Y, Atahan H N. Rheological and fresh properties of reduced fine content self-compacting concretes produced with different particle sizes of nano SiO2. Constr Build Mater, 2017, 142: 431 doi: 10.1016/j.conbuildmat.2017.03.098
    [27]
    Derringer G, Suich R. Simultaneous optimization of several response variables. J Qual Technol, 1980, 12(4): 214 doi: 10.1080/00224065.1980.11980968
    [28]
    Castro I A, Silva R S F, Tirapegui J, et al. Simultaneous optimization of response variables in protein mixture formulation: Constrained simplex method approach. Int J Food Sci Technol, 2003, 38(2): 103 doi: 10.1046/j.1365-2621.2003.00650.x
    [29]
    Mondal B, Srivastava V C, Mall I D. Electrochemical treatment of dye-bath effluent by stainless steel electrodes: Multiple response optimization and residue analysis. J Environ Sci Heal A, 2012, 47(13): 2040 doi: 10.1080/10934529.2012.695675
    [30]
    Yin S H, Wu A X, Hu K J, et al. The effect of solid components on the rheological and mechanical properties of cemented paste backfill. Miner Eng, 2012, 35: 61 doi: 10.1016/j.mineng.2012.04.008
    [31]
    Li J J, Yilmaz E, Cao S. Influence of solid content, cement/tailings ratio, and curing time on rheology and strength of cemented tailings backfill. Minerals, 2020, 10(10): 922 doi: 10.3390/min10100922
    [32]
    王少勇, 吳愛祥, 阮竹恩, 等. 基于環管實驗的膏體流變特性及影響因素. 中南大學學報(自然科學版), 2018, 49(10):2519

    Wang S Y, Wu A X, Ruan Z E, et al. Rheological properties of paste slurry and influence factors based on pipe loop test. J Central South Univ Sci Technol, 2018, 49(10): 2519
    [33]
    Vishalakshi K P, Revathi V, Sivamurthy Reddy S. Effect of type of coarse aggregate on the strength properties and fracture energy of normal and high strength concrete. Eng Fract Mech, 2018, 194: 52 doi: 10.1016/j.engfracmech.2018.02.029
    [34]
    Jia J Y, Gu X L. Effects of coarse aggregate surface morphology on aggregate-mortar interface strength and mechanical properties of concrete. Constr Build Mater, 2021, 294: 123515 doi: 10.1016/j.conbuildmat.2021.123515
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(3)  / Tables(3)

    Article views (2037) PDF downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频