Citation: | XING Yi, CUI Yong-kang, TIAN Jing-lei, SU Wei, WANG Wei-li, ZHANG Xi, LIU Yi, ZHAO Xiu-juan. Application status and prospect of low carbon technology in iron and steel industry[J]. Chinese Journal of Engineering, 2022, 44(4): 801-811. doi: 10.13374/j.issn2095-9389.2021.08.01.001 |
[1] |
國家統計局. 中華人民共和國2020年國民經濟和社會發展統計公報. 中國統計, 2021(3):8
National Bureau of Statistics. Statistical communiqué of the People’s Republic of China on the 2020 national economic and social development. China Stat, 2021(3): 8
|
[2] |
Bui M, Adjiman C S, Bardow A, et al. Carbon capture and storage (CCS): The way forward. Energy Environ Sci, 2018, 11(5): 1062 doi: 10.1039/C7EE02342A
|
[3] |
Zhang X Y, Jiao K X, Zhang J L, et al. A review on low carbon emissions projects of steel industry in the World. J Clean Prod, 2021, 306: 127259 doi: 10.1016/j.jclepro.2021.127259
|
[4] |
Quader M A, Ahmed S, Ghazilla R A R, et al. A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing. Renewable Sustainable Energy Rev, 2015, 50: 594 doi: 10.1016/j.rser.2015.05.026
|
[5] |
嚴珺潔. 超低二氧化碳排放煉鋼項目的進展與未來. 中國冶金, 2017, 27(2):6
Yan J J. Progress and future of ultra-low CO2 steel making program. China Metall, 2017, 27(2): 6
|
[6] |
王廣, 王靜松, 左海濱, 等. 高爐煤氣循環耦合富氫對中國煉鐵低碳發展的意義. 中國冶金, 2019, 29(10):1
Wang G, Wang J S, Zuo H B, et al. Effect of blast furnace gas recycling with hydrogen injection on low carbon development of Chinese ironmaking. China Metall, 2019, 29(10): 1
|
[7] |
薛慶國, 楊帆, 張欣欣, 等. 氧氣高爐的發展歷程及其在北京科技大學的研究進展. 工程科學學報, 2021, 43(12):1577
Xue Q G, Yang F, Zhang X X, et al. Development of oxygen blast furnace and its research progress in Beijing University of science and technology. Chin J Eng, 2021, 43(12): 1577
|
[8] |
姚聰林, 朱紅春, 姜周華, 等. 全廢鋼連續加料電弧爐短流程碳排放計算及分析. 材料與冶金學報, 2020, 19(4):259
Yao C L, Zhu H C, Jiang Z H, et al. CO2 emissions calculation and analysis of electric arc furnace with continuous feeding of only scrap. J Mater Metall, 2020, 19(4): 259
|
[9] |
程威. 中國電爐市場與長材連鑄連軋. 冶金經濟與管理, 2020(1):22
Cheng W. The EAF market and the continuous casting and rolling of long products. Metall Econ Manage, 2020(1): 22
|
[10] |
阮清華, 白苗苗. 我國長流程煉鋼與短流程煉鋼成本比較. 中國鋼鐵業, 2019(10):58 doi: 10.3969/j.issn.1672-5115.2019.10.018
Ruan Q H, Bai M M. Comparison of my country’s long-process steelmaking and short-process steelmaking costs. China Steel, 2019(10): 58 doi: 10.3969/j.issn.1672-5115.2019.10.018
|
[11] |
王新江. 中國電爐煉鋼的技術進步. 鋼鐵, 2019, 54(8):1
Wang X J. Technological progress of EAF steelmaking in China. Iron Steel, 2019, 54(8): 1
|
[12] |
姜周華, 姚聰林, 朱紅春, 等. 電弧爐煉鋼技術的發展趨勢. 鋼鐵, 2020, 55(7):1
Jiang Z H, Yao C L, Zhu H C, et al. Technology development trend in electric arc furnace steelmaking. Iron Steel, 2020, 55(7): 1
|
[13] |
李彬. 基于氫氣直接還原鐵冶煉高純鐵和高純軸承鋼的基礎研究[學位論文]. 北京: 北京科技大學, 2020
Li B. Fundamental Study on the Smelting High-Purity Iron and High-Purity Bearing Steel Using Direct Reduced Iron Prepared by Hydrogen [Dissertation]. Beijing: University of Science and Technology Beijing, 2020
|
[14] |
周翔. 直接還原工藝綜述及發展分析. 冶金經濟與管理, 2017(4):53 doi: 10.3969/j.issn.1002-1779.2017.04.016
Zhou X. Overview and development analysis of direct reduction process. Metall Econ Manage, 2017(4): 53 doi: 10.3969/j.issn.1002-1779.2017.04.016
|
[15] |
宋贊, 李相帥, 查春和. 我國直接還原鐵工藝的發展現狀及趨勢. 冶金管理, 2020(16):22
Song Z, Li X S, Zha C H. Development status and trend of direct reduction iron technology in my country. China Steel Focus, 2020(16): 22
|
[16] |
石禹. 世界直接還原鐵產量首次超過億噸. 冶金管理, 2020(18):30
Shi Y. The world's direct reduced iron production exceeded 100 million tons for the first time. China Steel Focus, 2020(18): 30
|
[17] |
應自偉, 儲滿生, 唐玨, 等. 非高爐煉鐵工藝現狀及未來適應性分析. 河北冶金, 2019(6):1
Ying Z W, Chu M S, Tang J, et al. Current situation and future adaptability analysis of non-blast furnace ironmaking process. Hebei Metall, 2019(6): 1
|
[18] |
Ren L, Zhou S, Peng T D, et al. A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China. Renewable Sustainable Energy Rev, 2021, 143: 110846 doi: 10.1016/j.rser.2021.110846
|
[19] |
唐玨, 儲滿生, 李峰, 等. 我國氫冶金發展現狀及未來趨勢. 河北冶金, 2020(8):1
Tang J, Chu M S, Li F, et al. Development status and future trend of hydrogen metallurgy in China. Hebei Metall, 2020(8): 1
|
[20] |
Yilmaz C, Wendelstorf J, Turek T. Modeling and simulation of hydrogen injection into a blast furnace to reduce carbon dioxide emissions. J Clean Prod, 2017, 154: 488 doi: 10.1016/j.jclepro.2017.03.162
|
[21] |
趙毅, 王永斌, 王添顥. 有機胺法吸收二氧化碳的研究進展. 再生資源與循環經濟, 2020, 13(7):26 doi: 10.3969/j.issn.1674-0912.2020.07.009
Zhao Y, Wang Y B, Wang T H. Research progress on the absorption of carbon dioxide by organic amine method. Recycl Resour Circ Econ, 2020, 13(7): 26 doi: 10.3969/j.issn.1674-0912.2020.07.009
|
[22] |
李建光, 李進中, 欽柏豪. 模擬鋼鐵行業煙氣中CO2捕獲與解析實驗研究. 能源環境保護, 2019, 33(5):23 doi: 10.3969/j.issn.1006-8759.2019.05.005
Li J G, Li J Z, Qin B H. Simulation of carbon dioxide capture and desorption in steel industry flue gas. Energy Environ Prot, 2019, 33(5): 23 doi: 10.3969/j.issn.1006-8759.2019.05.005
|
[23] |
張培昆, 張震威, 王立. 用于CO2捕集的新型石灰煅燒過程的數值分析. 工程科學學報,https://doi.org/10.13374/j.issn2095-9389.2021.03.22.002
Zhang P K, Zhang Z W, Wang L. Numerical analysis of novel lime calcination process for CO2 capture. Chin J Eng, https://doi.org/10.13374/j.issn2095-9389.2021.03.22.002
|
[24] |
朱榮, 王雪亮, 劉潤藻. 二氧化碳在鋼鐵冶金流程應用研究現狀與展望. 中國冶金, 2017, 27(4):1
Zhu R, Wang X L, Liu R Z. Recent progress and prospective of application of carbon dioxide in ferrous metallurgy process. China Metall, 2017, 27(4): 1
|
[25] |
吳志連, 王輝, 楊培志, 等. 鋼鐵工業尾氣制無水乙醇商業進展. 中國新技術新產品, 2019(13):133 doi: 10.3969/j.issn.1673-9957.2019.13.077
Wu Z L, Wang H, Yang P Z, et al. Commercial progress in the production of absolute ethanol from tail gas in the iron and steel industry. New Technol New Prod China, 2019(13): 133 doi: 10.3969/j.issn.1673-9957.2019.13.077
|
[26] |
Budinis S, Krevor S, Mac Dowell N, et al. An assessment of CCS costs, barriers and potential. Energy Strategy Rev, 2018, 22: 61
|
[27] |
桑樹勛. 二氧化碳地質存儲與煤層氣強化開發有效性研究述評. 煤田地質與勘探, 2018, 46(5):1 doi: 10.3969/j.issn.1001-1986.2018.05.001
Sang S X. Research review on technical effectiveness of CO2 geological storage and enhanced coalbed methane recovery. Coal Geol Explor, 2018, 46(5): 1 doi: 10.3969/j.issn.1001-1986.2018.05.001
|
[28] |
王保登, 趙興雷, 崔倩, 等. 中國神華煤制油深部咸水層CO2地質封存示范項目監測技術分析. 環境工程, 2018, 36(2):33
Wang B D, Zhao X L, Cui Q, et al. Environmental monitoring analysis of injected CO2 in saline layer for Shenhua CO2 storage project. Environ Eng, 2018, 36(2): 33
|