<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 45 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
YIN Sheng-hua, YAN Ze-peng, YAN Rong-fu, LI De-xian, ZHAO Guo-liang, ZHANG Peng-qiang. Rheological properties and resistance evolution of cemented unclassified tailings-waste rock paste backfill[J]. Chinese Journal of Engineering, 2023, 45(1): 9-18. doi: 10.13374/j.issn2095-9389.2021.07.31.002
Citation: YIN Sheng-hua, YAN Ze-peng, YAN Rong-fu, LI De-xian, ZHAO Guo-liang, ZHANG Peng-qiang. Rheological properties and resistance evolution of cemented unclassified tailings-waste rock paste backfill[J]. Chinese Journal of Engineering, 2023, 45(1): 9-18. doi: 10.13374/j.issn2095-9389.2021.07.31.002

Rheological properties and resistance evolution of cemented unclassified tailings-waste rock paste backfill

doi: 10.13374/j.issn2095-9389.2021.07.31.002
More Information
  • Corresponding author: E-mail: yan_zepeng@163.com
  • Received Date: 2021-07-31
    Available Online: 2021-09-08
  • Publish Date: 2023-01-01
  • Coarse aggregate paste filling is the core direction of today’s mine development. The coarse aggregate filling can effectively reduce the discharge of the solid mine waste, which is conducive to the realization of safe, clean, and efficient mining of the deposit and can also reduce the production costs of infill mining and promote the coordinated development of green mining. To study the pipeline conveying characteristics of the tailing?waste rock paste, the rheological properties were tested by a rheometer under different tailing?waste rock ratios and solid content conditions. A resistance equation integrating the compactness, water?cement ratio, and volume concentration was constructed. This was then brought into the Comsol software for simulations and compared with the actual measurement results of the ring pipe. Errors measured by the numerical model are verified to be all within 7%, indicating that the model reasonably calculated the resistance characteristics of the tailing-waste rock paste. Variation characteristics of the pipeline conveying resistance under different solid contents, tailing?waste rock ratios, and initial velocity conditions were also simulated. Experimental results show that the plastic viscosity and yield stress increase with the solid content and tailing?waste rock ratio. Due to the friction effect between the particles, the resistance loss tends to increase and then decrease with the tailing?waste rock ratio. The increase in the solid content leads to a decrease in the water content of the paste, which consequently results in difficulty in the flow of coarse aggregate slurry and a rapid increase in the resistance loss. The initial flow rate increases, the particle motion becomes unstable, the friction increases, and the growth rate of the drag loss increases greatly after the “inflection point” of 2.2 m·s?1. It is recommended that the mine should be filled with a tailing?waste rock ratio of 5∶5 and an initial flow rate of 2.2 m·s?1. The results have certain reference significance for the design of a coarse aggregate paste pipeline conveying system, which helps the development of coarse aggregate paste conveying technology and also has a positive effect on reducing the pipeline conveying resistance and extending the conveying distance.

     

  • loading
  • [1]
    楊志強, 王永前, 高謙, 等. 廢石尾砂混合料漿管道輸送壓力損失環管試驗. 合肥工業大學學報(自然科學版), 2017, 40(8):1092

    Yang Z Q, Wang Y Q, Gao Q, et al. Research on pressure loss in pipe by conveying mix slurry with waste rock and full tailings based on round pipe test. J Hefei Univ Technol (Nat Sci), 2017, 40(8): 1092
    [2]
    尹升華, 劉家明, 陳威, 等. 不同粗骨料對膏體凝結性能的影響及配比優化. 工程科學學報, 2020, 42(7):829

    Yin S H, Liu J M, Chen W, et al. Optimization of the effect and formulation of different coarse aggregates on performance of the paste backfill condensation. Chin J Eng, 2020, 42(7): 829
    [3]
    馮國瑞, 賈學強, 郭育霞, 等. 廢棄混凝土粗骨料對充填膏體性能的影響. 煤炭學報, 2015, 40(6):1320 doi: 10.13225/j.cnki.jccs.2015.3054

    Feng G R, Jia X Q, Guo Y X, et al. Influence of the wasted concrete coarse aggregate on the performance of cemented paste backfill. J China Coal Soc, 2015, 40(6): 1320 doi: 10.13225/j.cnki.jccs.2015.3054
    [4]
    Yang X B, Xiao B L, Gao Q, et al. Determining the pressure drop of cemented Gobi sand and tailings paste backfill in a pipe flow. Constr Build Mater, 2020, 255: 119371 doi: 10.1016/j.conbuildmat.2020.119371
    [5]
    Benzaazoua M, Bussière B, Demers I, et al. Integrated mine tailings management by combining environmental desulphurization and cemented paste backfill: Application to mine Doyon, Quebec, Canada. Miner Eng, 2008, 21(4): 330 doi: 10.1016/j.mineng.2007.11.012
    [6]
    程緯華. 粗骨料高濃度自流充填技術研究[學位論文]. 昆明: 昆明理工大學, 2012

    Cheng W H. Study on High Concentration Gravity Filling Technology of Coarse Aggregate [Dissertation]. Kunming: Kunming University of Science and Technology, 2012
    [7]
    Wu D, Yang B G, Liu Y C. Transportability and pressure drop of fresh cemented coal gangue-fly ash backfill (CGFB) slurry in pipe loop. Powder Technol, 2015, 284: 218 doi: 10.1016/j.powtec.2015.06.072
    [8]
    Liu L, Fang Z Y, Wu Y P, et al. Experimental investigation of solid-liquid two-phase flow in cemented rock-tailings backfill using Electrical Resistance Tomography. Constr Build Mater, 2018, 175: 267 doi: 10.1016/j.conbuildmat.2018.04.139
    [9]
    張連富, 吳愛祥, 王洪江. 泵送劑對高含泥膏體流變特性影響及機理. 工程科學學報, 2018, 40(8):918

    Zhang L F, Wu A X, Wang H J. Effects and mechanism of pumping agent on rheological properties of highly muddy paste. Chin J Eng, 2018, 40(8): 918
    [10]
    蔡嗣經, 黃剛, 吳迪, 等. 尾砂充填料漿流變性能模型與試驗研究. 東北大學學報(自然科學版), 2015, 36(6):882 doi: 10.3969/j.issn.1005-3026.2015.06.027

    Cai S J, Huang G, Wu D, et al. Experimental and modeling study on the rheological properties of tailings backfill. J Northeast Univ (Nat Sci), 2015, 36(6): 882 doi: 10.3969/j.issn.1005-3026.2015.06.027
    [11]
    Boylu F, Din?er H, Ate?ok G. Effect of coal particle size distribution, volume fraction and rank on the rheology of coal-water slurries. Fuel Process Technol, 2004, 85(4): 241 doi: 10.1016/S0378-3820(03)00198-X
    [12]
    Petit J Y, Khayat K H, Wirquin E. Coupled effect of time and temperature on variations of yield value of highly flowable mortar. Cem Concr Res, 2006, 36(5): 832 doi: 10.1016/j.cemconres.2005.11.001
    [13]
    吳愛祥, 程海勇, 王貽明, 等. 考慮管壁滑移效應膏體管道的輸送阻力特性. 中國有色金屬學報, 2016, 26(1):180 doi: 10.19476/j.ysxb.1004.0609.2016.01.021

    Wu A X, Cheng H Y, Wang Y M, et al. Transport resistance characteristic of paste pipeline considering effect of wall slip. Chin J Nonferrous Met, 2016, 26(1): 180 doi: 10.19476/j.ysxb.1004.0609.2016.01.021
    [14]
    劉曉輝. 膏體流變行為及其管流阻力特性研究[學位論文]. 北京: 北京科技大學, 2015

    Liu X H. Study on Rheological Behavior and Pipe Flow Resistance of Paste Backfill [Dissertation]. Beijing: University of Science and Technology Beijing, 2015
    [15]
    葉堅, 夏建新, Malczewska Beata. 水平管道水力輸送粗粒物料的阻力損失研究. 金屬礦山, 2011(7):12

    Ye J, Xia J X, Beata M. Study on the resistance loss of hydraulic transport for coarse particles in horizontal pipeline. Met Mine, 2011(7): 12
    [16]
    Wu D, Yang B G, Liu Y C. Pressure drop in loop pipe flow of fresh cemented coal gangue-fly ash slurry: Experiment and simulation. Adv Powder Technol, 2015, 26(3): 920 doi: 10.1016/j.apt.2015.03.009
    [17]
    楊天雨, 喬登攀, 王俊, 等. 廢石-風砂高濃度料漿管道輸送數值模擬及管輸阻力新模型. 中國有色金屬學報, 2021, 31(1):234 doi: 10.11817/j.ysxb.1004.0609.2021-36517

    Yang T Y, Qiao D P, Wang J, et al. Numerical simulation and new model of pipeline transportation resistance of waste rock-aeolian sand high concentration slurry. Chin J Nonferrous Met, 2021, 31(1): 234 doi: 10.11817/j.ysxb.1004.0609.2021-36517
    [18]
    張欽禮, 劉奇, 趙建文, 等. 深井似膏體充填管道的輸送特性. 中國有色金屬學報, 2015, 25(11):3190 doi: 10.19476/j.ysxb.1004.0609.2015.11.030

    Zhang Q L, Liu Q, Zhao J W, et al. Pipeline transportation characteristics of filling paste-like slurry pipeline in deep mine. Chin J Nonferrous Met, 2015, 25(11): 3190 doi: 10.19476/j.ysxb.1004.0609.2015.11.030
    [19]
    吳迪, 蔡嗣經, 楊威, 等. 基于CFD的充填管道固液兩相流輸送模擬及試驗. 中國有色金屬學報, 2012, 22(7):2133

    Wu D, Cai S J, Yang W, et al. Simulation and experiment of backfilling pipeline transportation of solid-liquid two-phase flow based on CFD. Chin J Nonferrous Met, 2012, 22(7): 2133
    [20]
    王新民, 張德明, 張欽禮, 等. 基于FLOW-3D軟件的深井膏體管道自流輸送性能. 中南大學學報(自然科學版), 2011, 42(7):2102

    Wang X M, Zhang D M, Zhang Q L, et al. Pipeline self-flowing transportation property of paste based on FLOW-3D software in deep mine. J Central South Univ (Sci Technol), 2011, 42(7): 2102
    [21]
    Xue Z L, Gan D Q, Zhang Y Z, et al. Rheological behavior of ultrafine-tailings cemented paste backfill in high-temperature mining conditions. Constr Build Mater, 2020, 253: 119212 doi: 10.1016/j.conbuildmat.2020.119212
    [22]
    吳愛祥, 劉曉輝, 王洪江, 等. 結構流充填料漿管道輸送阻力特性. 中南大學學報(自然科學版), 2014, 45(12):4325

    Wu A X, Liu X H, Wang H J, et al. Resistance characteristics of structure fluid backfilling slurry in pipeline transport. J Central South Univ (Sci Technol), 2014, 45(12): 4325
    [23]
    張修香, 喬登攀. 廢石-尾砂高濃度料漿的流變特性及屈服應力預測模型. 安全與環境學報, 2015, 15(4):278 doi: 10.13637/j.issn.1009-6094.2015.04.058

    Zhang X X, Qiao D P. Rheological property and yield stress forecasting model of high-density slurry with waste rock-tailings. J Saf Environ, 2015, 15(4): 278 doi: 10.13637/j.issn.1009-6094.2015.04.058
    [24]
    侯永強, 尹升華, 戴超群, 等. 尾礦膏體流變特性和管輸阻力計算模型. 中國有色金屬學報, 2021, 31(2):510 doi: 10.11817/j.ysxb.1004.0609.2021-35800

    Hou Y Q, Yin S H, Dai C Q, et al. Rheological properties and pipeline resistance calculation model in tailings paste. Chin J Nonferrous Met, 2021, 31(2): 510 doi: 10.11817/j.ysxb.1004.0609.2021-35800
    [25]
    Cheng H Y, Wu S C, Li H, et al. Influence of time and temperature on rheology and flow performance of cemented paste backfill. Constr Build Mater, 2020, 231: 117117 doi: 10.1016/j.conbuildmat.2019.117117
    [26]
    薛振林, 閆澤鵬, 焦華喆, 等. 全尾砂深錐濃密過程中絮團的動態沉降規律. 中國有色金屬學報, 2020, 30(9):2206 doi: 10.11817/j.ysxb.1004.0609.2020-37563

    Xue Z L, Yan Z P, Jiao H Z, et al. Dynamic settlement law of flocs during unclassified tailings in deep cone thickening process. Chin J Nonferrous Met, 2020, 30(9): 2206 doi: 10.11817/j.ysxb.1004.0609.2020-37563
    [27]
    甘德清, 孫海寬, 薛振林, 等. 溫度影響下的充填料漿大流量管輸流態演化. 中國礦業大學學報, 2021, 50(2):248 doi: 10.13247/j.cnki.jcumt.001225

    Gan D Q, Sun H K, Xue Z L, et al. Transport state evolution of the packed slurry with the influence of temperature. J China Univ Min Technol, 2021, 50(2): 248 doi: 10.13247/j.cnki.jcumt.001225
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(10)  / Tables(7)

    Article views (656) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频