Citation: | WANG Wen-rui, ZHANG Feng, ZHANG Jia-ming, ZHANG He-qiang. Particle flight behavior in hypersonic flame spraying[J]. Chinese Journal of Engineering, 2022, 44(2): 217-227. doi: 10.13374/j.issn2095-9389.2021.07.24.001 |
[1] |
Zhou Z, Wang L, Wang F C, et al. Formation and corrosion behavior of Fe-based amorphous metallic coatings by HVOF thermal spraying. Surf Coat Technol, 2009, 204(5): 563 doi: 10.1016/j.surfcoat.2009.08.025
|
[2] |
Zhou Z, Wang L, He D Y, et al. Microstructure and wear resistance of Fe-based amorphous metallic coatings prepared by HVOF thermal spraying. J Therm Spray Technol, 2010, 19(6): 1287 doi: 10.1007/s11666-010-9556-2
|
[3] |
Pan J J, Hu S S, Yang L J, et al. Numerical analysis of flame and particle behavior in an HVOF thermal spray process. Mater Des, 2016, 96: 370 doi: 10.1016/j.matdes.2016.02.008
|
[4] |
Kamnis S, Gu S. Study of in-flight and impact dynamics of nonspherical particles from HVOF guns. J Therm Spray Technol, 2010, 19(1-2): 31 doi: 10.1007/s11666-009-9382-6
|
[5] |
Bang S S, Park Y C, Lee J W, et al. Effect of the spray distance on the properties of high velocity oxygen-fuel (HVOF) sprayed WC-12Co coatings. J Nanosci Nanotechnol, 2018, 18(3): 1931 doi: 10.1166/jnn.2018.14990
|
[6] |
Feng C, Zhu R, Han B C, et al. Effect of nozzle exit wear on the fluid flow characteristics of supersonic oxygen lance. Metall Mater Trans B, 2020, 51(1): 187 doi: 10.1007/s11663-019-01722-w
|
[7] |
Tabbara H, Gu S. Computational simulation of liquid-fuelled HVOF thermal spraying. Surf Coat Technol, 2009, 204(5): 676 doi: 10.1016/j.surfcoat.2009.09.005
|
[8] |
Patel J R, Agrawal D H, Patel C P. Influence of sensitive parameters and flow characteristics in HVOF coating. Procedia Eng, 2012, 38: 1367 doi: 10.1016/j.proeng.2012.06.170
|
[9] |
王漢功, 袁曉靜, 侯根良, 等. 超音速火焰噴涂Ni粒子特性數值仿真. 兵工學報, 2006, 27(2):310 doi: 10.3321/j.issn:1000-1093.2006.02.027
Wang H G, Yuan X J, Hou G L, et al. Dynamic simulation of Ni particle behaviors in supersonic oxygen/air fuel spray process. Acta Armamentarii, 2006, 27(2): 310 doi: 10.3321/j.issn:1000-1093.2006.02.027
|
[10] |
王建文, 李智. D-jet噴嘴幾何參數對超音速噴射流場的影響. 燃燒科學與技術, 2014, 20(1):26
Wang J W, Li Z. Influence of geometric parameters of D-jet spray Gun on the flow behavior of HVOF field. J Combust Sci Technol, 2014, 20(1): 26
|
[11] |
何新寶, 吳念初, 張鎖德, 等. 噴涂距離對Fe基非晶涂層孔隙影響的研究. 材料科學與工藝, 2020, 28(1):31 doi: 10.11951/j.issn.1005-0299.20180346
He X B, Wu N C, Zhang S D, et al. Spraying distance effect on the porosity of Fe-based amorphous coatings. Mater Sci Technol, 2020, 28(1): 31 doi: 10.11951/j.issn.1005-0299.20180346
|
[12] |
Liu F H, Sun D B, Zhu R, et al. Effect of shrouding gas temperature on characteristics of a supersonic jet flow field with a shrouding Laval nozzle structure. Metall Mater Trans B, 2018, 49(4): 2050 doi: 10.1007/s11663-018-1272-1
|
[13] |
Liu F H, Sun D B, Zhu R, et al. Characteristics of flow field for supersonic oxygen multijets with various Laval nozzle structures. Metall Mater Trans B, 2019, 50(5): 2362 doi: 10.1007/s11663-019-01652-7
|
[14] |
劉福海, 朱榮, 董凱, 等. 拉瓦爾噴管結構模式對超音速射流流動特性的影響. 工程科學學報, 2020, 42(增刊1): 54
Liu F H, Zhu R, Dong K, et al. Effect of Laval nozzle structure on behaviors of supersonic oxygen jet flow field. Chin J Eng, 2020, 42(Suppl 1): 54
|
[15] |
Li M H, Shi D, Christofides P D. Diamond jet hybrid HVOF thermal spray: Gas-phase and particle behavior modeling and feedback control design. Ind Eng Chem Res, 2004, 43(14): 3632 doi: 10.1021/ie030559i
|
[16] |
Li M H, Christofides P D. Multi-scale modeling and analysis of an industrial HVOF thermal spray process. Chem Eng Sci, 2005, 60(13): 3649 doi: 10.1016/j.ces.2005.02.043
|
[17] |
王引真, 張永昂, 孫玉偉, 等. 超音速火焰噴槍氣體流場的數值模擬分析. 兵器材料科學與工程, 2012, 35(2):39
Wang Y Z, Zhang Y A, Sun Y W, et al. Numerical modeling of gas flow field in high velocity oxygen-fuel thermal spray Gun. Ordnance Mater Sci Eng, 2012, 35(2): 39
|
[18] |
李子亮, 張玲玲, 蒼大強. 超音速射流在高溫氣體環境中引射特性的模擬研究. 工程熱物理學報, 2018, 39(3):545
Li Z L, Zhang L L, Cang D Q. Modeling study on the entrainment of the supersonic jet at high ambient temperature. J Eng Thermophys, 2018, 39(3): 545
|
[19] |
Zhang S L, Li C X, Li C J, et al. Application of high velocity oxygen fuel flame (HVOF) spraying to fabrication of La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte for solid oxide fuel cells. J Power Sources, 2016, 301: 62
|
[20] |
Zeoli N, Gu S, Kamnis S. Numerical simulation of in-flight particle oxidation during thermal spraying. Comput Chem Eng, 2008, 32(7): 1661 doi: 10.1016/j.compchemeng.2007.08.008
|
[21] |
Li C, Gao X, Zhang D C, et al. Numerical investigation on the flame characteristics and particle behaviors in a HVOF spray process using kerosene as fuel. J Therm Spray Technol, 2021, 30(3): 725 doi: 10.1007/s11666-021-01165-3
|
[22] |
Wang X G, Song Q Z, Yu Z Y. Numerical investigation of combustion and flow dynamics in a high velocity oxygen-fuel thermal spray Gun. J Therm Spray Technol, 2016, 25(3): 441 doi: 10.1007/s11666-015-0362-8
|
[23] |
崔崇, 胡江, 陸冠雄, 等. 超音速火焰噴涂焰流和粒子流的數值模擬研究. 熱噴涂技術, 2010, 2(3):18 doi: 10.3969/j.issn.1674-7127.2010.03.004
Cui C, Hu J, Lu G X, et al. Numerical modeling of HVOF flame and in-flight particle. Therm Spray Technol, 2010, 2(3): 18 doi: 10.3969/j.issn.1674-7127.2010.03.004
|
[24] |
Gaona M, Lima R S, Marple B R. Influence of particle temperature and velocity on the microstructure and mechanical behaviour of high velocity oxy-fuel (HVOF)-sprayed nanostructured titania coatings. J Mater Process Technol, 2008, 198(1-3): 426 doi: 10.1016/j.jmatprotec.2007.07.024
|
[25] |
Khan M N, Shamim T. Investigation of a dual-stage high velocity oxygen fuel thermal spray system. Appl Energy, 2014, 130: 853 doi: 10.1016/j.apenergy.2014.03.075
|