<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
WANG Wen-rui, ZHANG Feng, ZHANG Jia-ming, ZHANG He-qiang. Particle flight behavior in hypersonic flame spraying[J]. Chinese Journal of Engineering, 2022, 44(2): 217-227. doi: 10.13374/j.issn2095-9389.2021.07.24.001
Citation: WANG Wen-rui, ZHANG Feng, ZHANG Jia-ming, ZHANG He-qiang. Particle flight behavior in hypersonic flame spraying[J]. Chinese Journal of Engineering, 2022, 44(2): 217-227. doi: 10.13374/j.issn2095-9389.2021.07.24.001

Particle flight behavior in hypersonic flame spraying

doi: 10.13374/j.issn2095-9389.2021.07.24.001
More Information
  • Corresponding author: E-mail: gmbitwrw@ustb.edu.cn
  • Received Date: 2021-07-24
    Available Online: 2021-09-18
  • Publish Date: 2022-02-15
  • High velocity oxygen fuel (HVOF) coatings have high bonding strengths and compactness, which can improve the wear, corrosion, and fatigue resistance of an underlying matrix. These coatings are widely used in chemical industries, metallurgy, aerospace, and other fields. Here, we studied hypersonic flame spraying through simulating flame flow fields and particle flight processes using the computational fluid dynamics software Fluent. The HVOF system uses oxygen as a combustion-supporting gas and kerosene as fuel. The temperature, velocity, and pressure distributions of the flame flow in a spray gun before adding particles were studied. The dynamic flight behavior of spray particles was calculated using a discrete phase model, and the effects of particle size, injection velocity, and sphericity on particle trajectory, velocity, and temperature were investigated. The optimal particle size range was 30–50 μm. Particles that were too large collided with the inner walls of the spray gun, hindering the combination of the particles and matrix. Particles that were too small were liquid during flight, and readily reacted with oxygen, leading to a reduction in the amorphous content of the prepared coatings. In the optimal size range, particles were uniformly distributed in the center of the flame flow, and the particles were in a molten state, ideal for forming coatings with higher bonding strengths. A systematic study of injection velocities on spray particle dynamics, determined the optimal injection velocity for small, medium, and large particles as 10–15, 5–10, and 1–5 m·s?1, respectively. Compared with spherical particles, nonspherical particles had higher drag coefficients, greater acceleration in the flow field of the flame, and gained more kinetic energy and less heat during flight.

     

  • loading
  • [1]
    Zhou Z, Wang L, Wang F C, et al. Formation and corrosion behavior of Fe-based amorphous metallic coatings by HVOF thermal spraying. Surf Coat Technol, 2009, 204(5): 563 doi: 10.1016/j.surfcoat.2009.08.025
    [2]
    Zhou Z, Wang L, He D Y, et al. Microstructure and wear resistance of Fe-based amorphous metallic coatings prepared by HVOF thermal spraying. J Therm Spray Technol, 2010, 19(6): 1287 doi: 10.1007/s11666-010-9556-2
    [3]
    Pan J J, Hu S S, Yang L J, et al. Numerical analysis of flame and particle behavior in an HVOF thermal spray process. Mater Des, 2016, 96: 370 doi: 10.1016/j.matdes.2016.02.008
    [4]
    Kamnis S, Gu S. Study of in-flight and impact dynamics of nonspherical particles from HVOF guns. J Therm Spray Technol, 2010, 19(1-2): 31 doi: 10.1007/s11666-009-9382-6
    [5]
    Bang S S, Park Y C, Lee J W, et al. Effect of the spray distance on the properties of high velocity oxygen-fuel (HVOF) sprayed WC-12Co coatings. J Nanosci Nanotechnol, 2018, 18(3): 1931 doi: 10.1166/jnn.2018.14990
    [6]
    Feng C, Zhu R, Han B C, et al. Effect of nozzle exit wear on the fluid flow characteristics of supersonic oxygen lance. Metall Mater Trans B, 2020, 51(1): 187 doi: 10.1007/s11663-019-01722-w
    [7]
    Tabbara H, Gu S. Computational simulation of liquid-fuelled HVOF thermal spraying. Surf Coat Technol, 2009, 204(5): 676 doi: 10.1016/j.surfcoat.2009.09.005
    [8]
    Patel J R, Agrawal D H, Patel C P. Influence of sensitive parameters and flow characteristics in HVOF coating. Procedia Eng, 2012, 38: 1367 doi: 10.1016/j.proeng.2012.06.170
    [9]
    王漢功, 袁曉靜, 侯根良, 等. 超音速火焰噴涂Ni粒子特性數值仿真. 兵工學報, 2006, 27(2):310 doi: 10.3321/j.issn:1000-1093.2006.02.027

    Wang H G, Yuan X J, Hou G L, et al. Dynamic simulation of Ni particle behaviors in supersonic oxygen/air fuel spray process. Acta Armamentarii, 2006, 27(2): 310 doi: 10.3321/j.issn:1000-1093.2006.02.027
    [10]
    王建文, 李智. D-jet噴嘴幾何參數對超音速噴射流場的影響. 燃燒科學與技術, 2014, 20(1):26

    Wang J W, Li Z. Influence of geometric parameters of D-jet spray Gun on the flow behavior of HVOF field. J Combust Sci Technol, 2014, 20(1): 26
    [11]
    何新寶, 吳念初, 張鎖德, 等. 噴涂距離對Fe基非晶涂層孔隙影響的研究. 材料科學與工藝, 2020, 28(1):31 doi: 10.11951/j.issn.1005-0299.20180346

    He X B, Wu N C, Zhang S D, et al. Spraying distance effect on the porosity of Fe-based amorphous coatings. Mater Sci Technol, 2020, 28(1): 31 doi: 10.11951/j.issn.1005-0299.20180346
    [12]
    Liu F H, Sun D B, Zhu R, et al. Effect of shrouding gas temperature on characteristics of a supersonic jet flow field with a shrouding Laval nozzle structure. Metall Mater Trans B, 2018, 49(4): 2050 doi: 10.1007/s11663-018-1272-1
    [13]
    Liu F H, Sun D B, Zhu R, et al. Characteristics of flow field for supersonic oxygen multijets with various Laval nozzle structures. Metall Mater Trans B, 2019, 50(5): 2362 doi: 10.1007/s11663-019-01652-7
    [14]
    劉福海, 朱榮, 董凱, 等. 拉瓦爾噴管結構模式對超音速射流流動特性的影響. 工程科學學報, 2020, 42(增刊1): 54

    Liu F H, Zhu R, Dong K, et al. Effect of Laval nozzle structure on behaviors of supersonic oxygen jet flow field. Chin J Eng, 2020, 42(Suppl 1): 54
    [15]
    Li M H, Shi D, Christofides P D. Diamond jet hybrid HVOF thermal spray: Gas-phase and particle behavior modeling and feedback control design. Ind Eng Chem Res, 2004, 43(14): 3632 doi: 10.1021/ie030559i
    [16]
    Li M H, Christofides P D. Multi-scale modeling and analysis of an industrial HVOF thermal spray process. Chem Eng Sci, 2005, 60(13): 3649 doi: 10.1016/j.ces.2005.02.043
    [17]
    王引真, 張永昂, 孫玉偉, 等. 超音速火焰噴槍氣體流場的數值模擬分析. 兵器材料科學與工程, 2012, 35(2):39

    Wang Y Z, Zhang Y A, Sun Y W, et al. Numerical modeling of gas flow field in high velocity oxygen-fuel thermal spray Gun. Ordnance Mater Sci Eng, 2012, 35(2): 39
    [18]
    李子亮, 張玲玲, 蒼大強. 超音速射流在高溫氣體環境中引射特性的模擬研究. 工程熱物理學報, 2018, 39(3):545

    Li Z L, Zhang L L, Cang D Q. Modeling study on the entrainment of the supersonic jet at high ambient temperature. J Eng Thermophys, 2018, 39(3): 545
    [19]
    Zhang S L, Li C X, Li C J, et al. Application of high velocity oxygen fuel flame (HVOF) spraying to fabrication of La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte for solid oxide fuel cells. J Power Sources, 2016, 301: 62
    [20]
    Zeoli N, Gu S, Kamnis S. Numerical simulation of in-flight particle oxidation during thermal spraying. Comput Chem Eng, 2008, 32(7): 1661 doi: 10.1016/j.compchemeng.2007.08.008
    [21]
    Li C, Gao X, Zhang D C, et al. Numerical investigation on the flame characteristics and particle behaviors in a HVOF spray process using kerosene as fuel. J Therm Spray Technol, 2021, 30(3): 725 doi: 10.1007/s11666-021-01165-3
    [22]
    Wang X G, Song Q Z, Yu Z Y. Numerical investigation of combustion and flow dynamics in a high velocity oxygen-fuel thermal spray Gun. J Therm Spray Technol, 2016, 25(3): 441 doi: 10.1007/s11666-015-0362-8
    [23]
    崔崇, 胡江, 陸冠雄, 等. 超音速火焰噴涂焰流和粒子流的數值模擬研究. 熱噴涂技術, 2010, 2(3):18 doi: 10.3969/j.issn.1674-7127.2010.03.004

    Cui C, Hu J, Lu G X, et al. Numerical modeling of HVOF flame and in-flight particle. Therm Spray Technol, 2010, 2(3): 18 doi: 10.3969/j.issn.1674-7127.2010.03.004
    [24]
    Gaona M, Lima R S, Marple B R. Influence of particle temperature and velocity on the microstructure and mechanical behaviour of high velocity oxy-fuel (HVOF)-sprayed nanostructured titania coatings. J Mater Process Technol, 2008, 198(1-3): 426 doi: 10.1016/j.jmatprotec.2007.07.024
    [25]
    Khan M N, Shamim T. Investigation of a dual-stage high velocity oxygen fuel thermal spray system. Appl Energy, 2014, 130: 853 doi: 10.1016/j.apenergy.2014.03.075
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(17)  / Tables(4)

    Article views (671) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频