Citation: | ZHANG Ming, FU Dong-mei, CHENG Xue-qun, YANG Bing-kun, HAO Wen-kui, CHEN Yun, SHAO Li-zhen. A two-step method for cusp catastrophe model construction based on the selection of important variables[J]. Chinese Journal of Engineering, 2023, 45(1): 128-136. doi: 10.13374/j.issn2095-9389.2021.07.19.006 |
[1] |
Qiao C, Guo Y H, Li C H. Study on rock burst prediction of deep buried tunnel based on cusp catastrophe theory. Geotech Geol Eng, 2021, 39(2): 1101 doi: 10.1007/s10706-020-01547-4
|
[2] |
Zhi Y J, Yang T, Fu D M. An improved deep forest model for forecast the outdoor atmospheric corrosion rate of low-alloy steels. J Mater Sci Technol, 2020, 49: 202 doi: 10.1016/j.jmst.2020.01.044
|
[3] |
裴甲坤, 王飛躍, 郭換換, 等. 基于改進尖點突變模型的化工事故致因分析. 中國安全科學學報, 2019, 29(7):20 doi: 10.16265/j.cnki.issn1003-3033.2019.07.004
Pei J K, Wang F Y, Guo H H, et al. Cause analysis of chemical accidents based on improved cusp catastrophe model. China Saf Sci J, 2019, 29(7): 20 doi: 10.16265/j.cnki.issn1003-3033.2019.07.004
|
[4] |
林黎. 中國股票市場的隨機尖點突變模型. 系統工程學報, 2016, 31(1):55 doi: 10.13383/j.cnki.jse.2016.01.006
Lin L. Stochastic cusp catastrophe model for Chinese stock market. J Syst Eng, 2016, 31(1): 55 doi: 10.13383/j.cnki.jse.2016.01.006
|
[5] |
Barunik J, Kukacka J. Realizing stock market crashes: Stochastic cusp catastrophe model of returns under time-varying volatility. Quant Finance, 2015, 15(6): 959 doi: 10.1080/14697688.2014.950319
|
[6] |
馬躍如, 易丹, 胡斌. 養老護理員工作幸福感的隨機突變機理. 系統管理學報, 2021, 30(3):526
Ma Y R, Yi D, Hu B. Analysis of stochastic catastrophe mechanism of occupational well-being of nursing practitioner servicing for the elderly. J Syst Manag, 2021, 30(3): 526
|
[7] |
Eladany M M, Eldesouky A A, Sallam A A. Power system transient stability: An algorithm for assessment and enhancement based on catastrophe theory and FACTS devices. IEEE Access, 2018, 6: 26424 doi: 10.1109/ACCESS.2018.2834906
|
[8] |
Xiao X P, Duan H M. A new grey model for traffic flow mechanics. Eng Appl Artif Intell, 2020, 88: 103350 doi: 10.1016/j.engappai.2019.103350
|
[9] |
Wei X, Fu D M, Chen M D, et al. Data mining to effect of key alloying elements on corrosion resistance of low alloy steels in Sanya seawater environmentAlloying Elements. J Mater Sci Technol, 2021, 64: 222 doi: 10.1016/j.jmst.2020.01.040
|
[10] |
Pei Z B, Zhang D W, Zhi Y J, et al. Towards understanding and prediction of atmospheric corrosion of an Fe/Cu corrosion sensor via machine learning. Corros Sci, 2020, 170: 108697 doi: 10.1016/j.corsci.2020.108697
|
[11] |
Thom R. Structural Stability and Morphogenesis: An Outline of a General Theory of Models. London: Benjamin W A, 1975
|
[12] |
Cobb L. Stochastic catastrophe models and multimodal distributions. Syst Res, 1978, 23(4): 360 doi: 10.1002/bs.3830230407
|
[13] |
Cobb L, Zacks S. Applications of catastrophe theory for statistical modeling in the biosciences. J Am Stat Assoc, 1985, 80(392): 793 doi: 10.1080/01621459.1985.10478184
|
[14] |
Zeeman E C. Catastrophe theory. Sci Am, 1976, 234(4): 65 doi: 10.1038/scientificamerican0476-65
|
[15] |
Niu D X, Wang K K, Sun L J, et al. Short-term photovoltaic power generation forecasting based on random forest feature selection and CEEMD: A case study. Appl Soft Comput, 2020, 93: 106389 doi: 10.1016/j.asoc.2020.106389
|
[16] |
Al-Fugara A, Ahmadlou M, Shatnawi R, et al. Novel hybrid models combining meta-heuristic algorithms with support vector regression (SVR) for groundwater potential mapping. Geocarto Int, 2020: 1
|
[17] |
Zhang J L, da Xu, Hao K J, et al. FS-GBDT: Identification multicancer-risk module via a feature selection algorithm by integrating Fisher score and GBDT. Brief Bioinform, 2020, 22(3): bbaa189
|
[18] |
Tsai C F, Sung Y T. Ensemble feature selection in high dimension, low sample size datasets: Parallel and serial combination approaches. Knowl Based Syst, 2020, 203: 106097 doi: 10.1016/j.knosys.2020.106097
|
[19] |
Bolón-Canedo V, Alonso-Betanzos A. Ensembles for feature selection: A review and future trends. Inf Fusion, 2019, 52: 1 doi: 10.1016/j.inffus.2018.11.008
|
[20] |
Pes B. Ensemble feature selection for high-dimensional data: A stability analysis across multiple domains. Neural Comput Appl, 2020, 32(10): 5951 doi: 10.1007/s00521-019-04082-3
|
[21] |
Hartelman P A I, Maas H L J, Molenaar P C M. Detecting and modelling developmental transitions. Br J Dev Psychol, 1998, 16(1): 97 doi: 10.1111/j.2044-835X.1998.tb00751.x
|
[22] |
Grasman R P P P, van der Maas H L J, Wagenmakers E J. Fitting the cusp catastrophe inR: AcuspPackage primer. J Stat Soft, 2009, 32(8): 1
|
[23] |
Aaron F, Cynthia R, Francesca D. All models are wrong, but many are useful: learning a variable's importance by studying an entire class of prediction models simultaneously. J Machine Learning Research, 2019, 20(177): 1
|
[24] |
Breiman L. Random forests. Machine Learning, 2001, 45(1): 5 doi: 10.1023/A:1010933404324
|
[25] |
Buscema M. Back propagation neural networks. Subst Use Misuse, 1998, 33(2): 233 doi: 10.3109/10826089809115863
|
[26] |
Karatzoglou A, Smola A, Hornik K, et al. Kernlab- AnS4Package for kernel methods inR. J Stat Soft, 2004, 11(9): 1
|
[27] |
Amar Aladžuz. Hotels accommodation prices dataset [DB/OL]. Kaggle (2020-12-24) [2021-07-16].https://www.kaggle.com/aladzuzamar/hotels-accommodation-prices-dataset
|
[28] |
Biecek P. DALEX: explainers for complex predictive models in R. J Mach Learn Res, 2018, 19(1): 3245
|
[29] |
Pei Z B, Cheng X Q, Yang X J, et al. Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors. J Mater Sci Technol, 2021, 64: 214 doi: 10.1016/j.jmst.2020.01.023
|