Citation: | YU Mei-na, ZOU Cheng, GAO Yan-zi, YANG Huai. Effects of controllable defects on the bistable properties of cholesteric liquid crystal materials and the potential application[J]. Chinese Journal of Engineering, 2022, 44(4): 712-721. doi: 10.13374/j.issn2095-9389.2021.06.30.004 |
[1] |
Abergel T, Delmastro C. Tracking Building 2020 [R/OL]. International Energy Agency (2020-06) [2021-06-30].https://www.iea.org/reports/tracking-buildings-2020
|
[2] |
Rezaei S D, Shannigrahi S, Ramakrishna S. A review of conventional, advanced, and smart glazing technologies and materials for improving indoor environment. Sol Energy Mater Sol Cells, 2017, 159: 26 doi: 10.1016/j.solmat.2016.08.026
|
[3] |
Hemaida A, Ghosh A, Sundaram S, et al. Evaluation of thermal performance for a smart switchable adaptive polymer dispersed liquid crystal (PDLC) glazing. Sol Energy, 2020, 195: 185 doi: 10.1016/j.solener.2019.11.024
|
[4] |
Alghamdi H, Almawgani A H M. Smart and efficient energy saving system using PDLC glass // 2019 Smart City Symposium Prague (SCSP). Prague, 2019: 1
|
[5] |
Guo S M, Liang X, Zhang H M, et al. An electrically light-transmittance-controllable film with a low-driving voltage from a coexistent system of polymer-dispersed and polymer-stabilised cholesteric liquid crystals. Liq Cryst, 2018, 45(12): 1854 doi: 10.1080/02678292.2018.1501820
|
[6] |
Liang X, Guo C S, Chen M, et al. A roll-to-roll process for multi-responsive soft-matter composite films containing CsxWO3 nanorods for energy-efficient smart window applications. Nanoscale Horiz, 2017, 2(6): 319 doi: 10.1039/C7NH00105C
|
[7] |
Liang X, Chen M, Chen G, et al. Effects of polymer micro-structures on the thermo-optical properties of a flexible soft-mater film based on liquid crystals/polymer composite. Polymer, 2018, 146: 161 doi: 10.1016/j.polymer.2018.05.044
|
[8] |
Zhang H M, Cao H, Chen M, et al. Effects of the fluorinated liquid crystal molecules on the electro-optical properties of polymer dispersed liquid crystal films. Liq Cryst, 2017, 44(14-15): 2301 doi: 10.1080/02678292.2017.1376715
|
[9] |
Zhang H M, Zhong T J, Chen M, et al. The physical properties of alkene-terminated liquid crystal molecules/E8 mixture and the electro-optical properties as they doped in polymer-dispersed liquid crystal systems. Liq Cryst, 2018, 45(8): 1118 doi: 10.1080/02678292.2017.1411984
|
[10] |
Zhang H M, Chen M, Jiang T M, et al. Cyano terminated tolane compounds for polymer dispersed liquid crystal application: Relationship between cyano terminated tolane based molecular structures and electro-optical properties. Liq Cryst, 2018, 45(12): 1771 doi: 10.1080/02678292.2018.1485975
|
[11] |
Manda R, Pagidi S, Kim M, et al. Effect of monomer concentration and functionality on electro-optical properties of polymer-stabilised optically isotropic liquid crystals. Liq Cryst, 2018, 45(5): 736 doi: 10.1080/02678292.2017.1380239
|
[12] |
Mouquinho A, Figueirinhas J, Sotomayor J. Digital optical memory devices based on polymer-dispersed liquid crystals films: Appropriate polymer matrix morphology. Liq Cryst, 2020, 47(5): 636 doi: 10.1080/02678292.2019.1667444
|
[13] |
Saeed M H, Zhang S F, Zhou L, et al. Effects of rigid structures containing (meth)acrylate monomers and crosslinking agents with different chain length on the morphology and electro-optical properties of polymer-dispersed liquid crystal films. J Mod Opt, 2020, 67(8): 682 doi: 10.1080/09500340.2020.1760386
|
[14] |
Lin H N, Zhang S F, Saeed M H, et al. Effects of the methacrylate monomers with different end groups on the morphologies, electro-optical and mechanical properties of polymer dispersed liquid crystals composite films. Liq Cryst, 2021, 48(5): 722 doi: 10.1080/02678292.2020.1815091
|
[15] |
Kizhakidathazhath R, Nishikawa H, Okumura Y, et al. High-performance polymer dispersed liquid crystal enabled by uniquely designed acrylate monomer. Polymers, 2020, 12(8): 1625 doi: 10.3390/polym12081625
|
[16] |
Gao H Q, Zhang S F, Saeed M H, et al. Study on the morphologies and electro-optical properties of cyano-phenyl-ester liquid crystals/polymer composite films prepared by a stepwise polymerisation. Liq Cryst, 2020, 47(10): 1497 doi: 10.1080/02678292.2020.1737976
|
[17] |
Yang J, Zhang Y, Zhang C H, et al. Regulating content of thiol/LC and UV intensity to optimize morphology and electro-optical performance of polymer-dispersed liquid crystal. Liq Cryst, 2018, 45(12): 1726 doi: 10.1080/02678292.2018.1455226
|
[18] |
Zhang L, Shi Z Q, He T Y, et al. Effects of the chain length of crosslinking agent and dye-doped amount on the electro-optical properties of polymer-dispersed liquid crystal films prepared by nucleophile-initiated thiol-ene click reaction. Liq Cryst, 2020, 47(1): 42 doi: 10.1080/02678292.2019.1626924
|
[19] |
Zhang L, Liu Y W, Shi Z Q, et al. Effects of alkyl chain length of monomer and dye-doped type on the electro-optical properties of polymer-dispersed liquid crystal films prepared by nucleophile-initiated thiol-ene click reaction. Liq Cryst, 2020, 47(5): 658 doi: 10.1080/02678292.2019.1673909
|
[20] |
Zhong T J, Mandle R J, Goodby J W, et al. Thiol-ene reaction based polymer dispersed liquid crystal composite films with low driving voltage and high contrast ratio. Liq Cryst, 2020, 47(14-15): 2171 doi: 10.1080/02678292.2018.1563919
|
[21] |
Khlifi S, Bigeon J, Amela-Cortes M, et al. Switchable two-dimensional waveguiding abilities of luminescent hybrid nanocomposites for active solar concentrators. ACS Appl Mater Inter, 2020, 12(12): 14400 doi: 10.1021/acsami.9b23055
|
[22] |
Chu Y T, Yin Z P, Sha J Q, et al. Regulation and control of polymer network deformation in reverse-mode polymer-stabilised cholesteric texture. Liq Cryst, 2017, 44(4): 688 doi: 10.1080/02678292.2016.1230895
|
[23] |
Fuh A Y G, Shin Z B, Yang C H, et al. Electrically controllable smart window with greyscale based on polymer-stabilised cholesteric texture films. Liq Cryst, 2016, 43(12): 1784 doi: 10.1080/02678292.2016.1209700
|
[24] |
Lu H B, Chu Y T, Jing S C, et al. Characterisation and effect of polymer network deformation in reverse-mode polymer-stabilised cholesteric texture. Liq Cryst, 2017, 44(3): 437 doi: 10.1080/02678292.2016.1217359
|
[25] |
Baliyan V K, Jeong K U, Kang S W. Dichroic-dye-doped short pitch cholesteric liquid crystals for the application of electrically switchable smart windows. Dyes Pigments, 2019, 166: 403 doi: 10.1016/j.dyepig.2019.03.045
|
[26] |
Li C C, Tseng H Y, Chen C W, et al. Versatile energy-saving smart glass based on tristable cholesteric liquid crystals. ACS Appl Energy Mater, 2020, 3(8): 7601 doi: 10.1021/acsaem.0c01033
|
[27] |
Rumi M, Bunning T J, White T J. Polymer stabilization of cholesteric liquid crystals in the oblique helicoidal state. Soft Matter, 2018, 14(44): 8883 doi: 10.1039/C8SM01278D
|
[28] |
Oswald P, Colombier J. On the measurement of the bend elastic constant in nematic liquid crystals close to the nematic-to-SmA and the nematic-to-NTB phase transitions. Liq Cryst, 2021: 1
|
[29] |
Kitzerow H S, Bahr C. Chirality in Liquid Crystals. New York: Springer-Verlag, 2001
|
[30] |
Yu M N, Zhou X C, Jiang J H, et al. Matched elastic constants for a perfect helical planar state and a fast switching time in chiral nematic liquid crystals. Soft Matter, 2016, 12(19): 4483 doi: 10.1039/C6SM00546B
|
[31] |
Wang L, He W L, Wang Q, et al. Polymer-stabilized nanoparticle-enriched blue phase liquid crystals. J Mater Chem C, 2013, 1(40): 6526 doi: 10.1039/c3tc31253d
|
[32] |
Li J T, Bisoyi H K, Tian J J, et al. Optically rewritable transparent liquid crystal displays enabled by light-driven chiral fluorescent molecular switches. Adv Mater, 2019, 31(10): 1807751 doi: 10.1002/adma.201807751
|
[33] |
Wang J Q, Meng C L, Wang C T, et al. A fully self-powered, ultra-stable cholesteric smart window triggered by instantaneous mechanical stimuli. Nano Energy, 2021, 85: 105976 doi: 10.1016/j.nanoen.2021.105976
|