<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 45 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
LEI Jie, WANG Ming-he, ZHOU Jiang-hong, SUN She-sheng, LONG Hong-ming. Mechanism and structure-activity relationship of a new composite binder to improve the quality of green pellets[J]. Chinese Journal of Engineering, 2023, 45(1): 91-97. doi: 10.13374/j.issn2095-9389.2021.06.30.003
Citation: LEI Jie, WANG Ming-he, ZHOU Jiang-hong, SUN She-sheng, LONG Hong-ming. Mechanism and structure-activity relationship of a new composite binder to improve the quality of green pellets[J]. Chinese Journal of Engineering, 2023, 45(1): 91-97. doi: 10.13374/j.issn2095-9389.2021.06.30.003

Mechanism and structure-activity relationship of a new composite binder to improve the quality of green pellets

doi: 10.13374/j.issn2095-9389.2021.06.30.003
More Information
  • Corresponding author: E-mail: yaflhm@126.com
  • Received Date: 2021-06-30
    Available Online: 2021-08-12
  • Publish Date: 2023-01-01
  • Reducing bentonite consumption is one of the effective ways to improve the grade of pellets and realize energy saving and emission reduction. Based on the new high-efficiency composite binder, the effect of the composite binder on the quality of green pellets and structure-activity relationship with important indexes were studied by means of green pellet preparation, linear fitting analysis, and green pellet mechanical characteristics analysis. Moreover, the mechanism of the composite binder to improve the quality of the green pellets was expounded. Results show that the composite binder pellet, with a ratio of 1.2% bentonite and 0.028% organic binder, has a drop number (dropped from 0.5 m height) of 6.2, a average crushing strength of 14.5 N, and a shock temperature of 542 ℃. Compared with the pellet with 2.0% bentonite, the mass of the green pellets is similar; however, the bentonite consumption is reduced by 40%. Based on the analysis of the structure-activity relationship, the organic binder has a considerable effect on the drop number and the shock temperature of the green pellets, and the bentonite has a greater effect on the dry-crushing strength. The organic binder strengthens the drop number of the pellets by enhancing the hydrophilicity, capillary force, and viscosity, and it forms small amounts of pores on the surface layer during drying, which is beneficial for discharging water in the pellets and improving the shock temperature of the pellets. After drying, the organic binder strengthens the pellets in the form of a solid connection bridge; however, the site and the size of the pores may reduce the dry-crushing strength. Therefore, bentonite plays a decisive role in the strength of the dry pellets, and the influence of the organic binder on the strength of the dry pellets is multifaceted.

     

  • loading
  • [1]
    邢奕, 張文伯, 蘇偉, 等. 中國鋼鐵行業超低排放之路. 工程科學學報, 2021, 43(1):1

    Xing Y, Zhang W B, Su W, et al. Research of ultra-low emission technologies of the iron and steel industry in China. Chin J Eng, 2021, 43(1): 1
    [2]
    王新東, 金永龍. 高爐使用高比例球團的戰略思考與球團生產的試驗研究. 鋼鐵, 2021, 56(5):7

    Wang X D, Jin Y L. Strategy analysis and study of high ratio of pellet utilized in blast furnace. Iron Steel, 2021, 56(5): 7
    [3]
    邢奕, 崔永康, 蘇偉, 等. SBA-15脫除超細顆粒的機制研究. 工程科學學報, 2020, 42(3):313

    Xing Y, Cui Y K, Su W, et al. Study of the mechanism of removing ultrafine particles using SBA-15. Chin J Eng, 2020, 42(3): 313
    [4]
    吳勝利, 張永忠, 蘇博, 等. 影響燒結工藝過程NOx排放質量濃度的主要因素解析. 工程科學學報, 2017, 39(5):693

    Wu S L, Zhang Y Z, Su B, et al. Analysis of main factors affecting NOx emissions in sintering process. Chin J Eng, 2017, 39(5): 693
    [5]
    閆伯駿, 邢奕, 路培, 等. 鋼鐵行業燒結煙氣多污染物協同凈化技術研究進展. 工程科學學報, 2018, 40(7):767

    Yan B J, Xing Y, Lu P, et al. A critical review on the research progress of multi-pollutant collaborative control technologies of sintering flue gas in the iron and steel industry. Chin J Eng, 2018, 40(7): 767
    [6]
    張新兵, 朱夢偉. 膨潤土對我國球團生產的影響. 燒結球團, 2003, 28(6):3 doi: 10.3969/j.issn.1000-8764.2003.06.002

    Zhang X B, Zhu M W. Effect of bentonite additive on pelletizing operation of our country. Sinter Pelletizing, 2003, 28(6): 3 doi: 10.3969/j.issn.1000-8764.2003.06.002
    [7]
    Kawatra S K, Ripke S J. Developing and understanding the bentonite fiber bonding mechanism. Miner Eng, 2001, 14(6): 647 doi: 10.1016/S0892-6875(01)00056-5
    [8]
    Kawatra S K, Ripke S J. Laboratory studies for improving green ball strength in bentonite-bonded magnetite concentrate pellets. Int J Miner Process, 2003, 72(1-4): 429 doi: 10.1016/S0301-7516(03)00117-0
    [9]
    裴業虎, 甘學鋒, 陳義勇. 新型有機粘接劑作球團添加劑試驗研究. 燒結球團, 2012, 37(1):39 doi: 10.3969/j.issn.1000-8764.2012.01.010

    Pei Y H, Gan X F, Chen Y Y. Experimental research on new type of organic binder as pellet additive. Sinter Pelletizing, 2012, 37(1): 39 doi: 10.3969/j.issn.1000-8764.2012.01.010
    [10]
    范曉慧, 王祎, 甘敏, 等. 提高有機粘結劑氧化球團礦強度的措施. 鋼鐵研究學報, 2008, 20(5):5

    Fan X H, Wang Y, Gan M, et al. Strength enhancement of oxide pellet with organic binder. J Iron Steel Res, 2008, 20(5): 5
    [11]
    黃桂香. 應用新型有機粘結劑制備氧化球團的研究[學位論文]. 長沙: 中南大學, 2007

    Huang G X. Study on Preparation of Oxidized Pellet by New-Style Organic Binder [Dissertation]. Changsha: Central South University, 2007
    [12]
    李宏煦, 姜濤, 邱冠周, 等. 鐵礦球團有機粘結劑的分子構型及選擇判據. 中南工業大學學報(自然科學版), 2000, 31(1):17

    Li H X, Jiang T, Qiu G Z, et al. Molecular structure mould and selecting criterion of organic binder for iron ore pellet. J Central South Univ Technol Nat Sci, 2000, 31(1): 17
    [13]
    李宏煦, 王淀佐, 胡岳華, 等. 羧甲基淀粉鈉提高球團強度的機理. 中南工業大學學報(自然科學版), 2001, 32(4):351

    Li H X, Wang D Z, Hu Y H, et al. The mechanism of improving pellet strength by carboxyl methlated amylum. J Central South Univ Technol Nat Sci, 2001, 32(4): 351
    [14]
    楊永斌, 黃桂香, 姜濤, 等. 有機粘結劑替代膨潤土制備氧化球團. 中南大學學報(自然科學版), 2007, 38(5):850

    Yang Y B, Huang G X, Jiang T, et al. Application of organic binder as substitutes for bentonite in pellet preparation. J Central South Univ Sci Technol, 2007, 38(5): 850
    [15]
    黃柱成, 王雨蒙, 柴斌, 等. 纖維化膨潤土強化氧化球團制備及其機理. 中南大學學報(自然科學版), 2014, 45(7):2145

    Huang Z C, Wang Y M, Chai B, et al. Preparation of oxide pellets with fibrosis bentonite and its mechanism. J Central South Univ Sci Technol, 2014, 45(7): 2145
    [16]
    黃柱成, 李鐵輝, 易凌云, 等. 纖維化膨潤土制備及其在鐵精礦球團中的應用. 中南大學學報(自然科學版), 2014, 45(2):341

    Huang Z C, Li T H, Yi L Y, et al. Preparation of fibrosis bentonite and its application in iron ore concentrate pellet. J Central South Univ Sci Technol, 2014, 45(2): 341
    [17]
    張元波, 歐陽學臻, 路漫漫, 等. 腐植酸改性膨潤土在鐵礦球團中的應用效果. 燒結球團, 2018, 43(4):27

    Zhang Y B, Ouyang X Z, Lu M M, et al. Application effect of humic acid modified bentonite binder in iron ore pellets. Sinter Pelletizing, 2018, 43(4): 27
    [18]
    謝小林, 段婷, 鄭富強, 等. 改性復合黏結劑制備磁鐵礦氧化球團研究. 金屬礦山, 2018(1):79

    Xie X L, Duan T, Zheng F Q, et al. Study of magnetite oxidized pellet prepared by modified composite binder. Met Mine, 2018(1): 79
    [19]
    潘淑霞, 孫王杰, 張若東, 等. 數據分析與SPSS軟件應用. 吉林醫藥學院學報, 2005, 26(3):145 doi: 10.3969/j.issn.1673-2995.2005.03.010

    Pan S X, Sun W J, Zhang R D, et al. Data analysis and SPSS software application. J Jilin Mil Med Coll Fourth Mil Med Univ, 2005, 26(3): 145 doi: 10.3969/j.issn.1673-2995.2005.03.010
    [20]
    許開成, 畢麗蘋, 陳夢成. 基于SPSS回歸分析的鋰渣混凝土抗壓強度預測模型. 建筑科學與工程學報, 2017, 34(1):15 doi: 10.3969/j.issn.1673-2049.2017.01.003

    Xu K C, Bi L P, Chen M C. Prediction model of compressive strength of lithium slag concrete based on SPSS regression analysis. J Archit Civ Eng, 2017, 34(1): 15 doi: 10.3969/j.issn.1673-2049.2017.01.003
    [21]
    劉連峰. 顆粒聚合體碰撞破損的細觀力學仿真研究. 力學進展, 2006, 36(4):599 doi: 10.3321/j.issn:1000-0992.2006.04.011

    Liu L F. Micromechanics study on agglomerate impact breakage. Adv Mech, 2006, 36(4): 599 doi: 10.3321/j.issn:1000-0992.2006.04.011
    [22]
    Orr F M, Scriven L E, Rivas A P. Pendular rings between solids: Meniscus properties and capillary force. J Fluid Mech, 1975, 67(4): 723 doi: 10.1017/S0022112075000572
    [23]
    Wei R F, Li J X, Tang G W, et al. Strength and consolidation mechanism of iron ore and coal pellets. Ironmak Steelmak, 2014, 41(7): 514 doi: 10.1179/1743281213Y.0000000147
    [24]
    潘建, 田宏宇, 朱德慶, 等. 超微細鐵精礦的粒度特性和潤濕性對其成球性能的交互影響. 工程科學學報, 2017, 39(6):830

    Pan J, Tian H Y, Zhu D Q, et al. Particle size and wettability effect of ultrafine magnetite concentrate on ballability. Chin J Eng, 2017, 39(6): 830
    [25]
    Hotta K, Takeda K, Iinoya K. The capillary binding force of a liquid bridge. Powder Technol, 1974, 10(4-5): 231 doi: 10.1016/0032-5910(74)85047-3
    [26]
    Davis R H, Serayssol J M, Hinch E J. The elastohydrodynamic collision of two spheres. J Fluid Mech, 1986, 163: 479 doi: 10.1017/S0022112086002392
    [27]
    Lian G, Adams M J, Thornton C. Elastohydrodynamic collisions of solid spheres. J Fluid Mech, 1996, 311: 141 doi: 10.1017/S0022112096002534
    [28]
    Adams M J, Perchard V. The cohesive forces between particles with interstitial liquid. Inst Chem Eng Symp, 1985, 91: 147
    [29]
    Goldman A J, Cox R G, Brenner H. Slow viscous motion of a sphere parallel to a plane wall—II Couette flow. Chem Eng Sci, 1967, 22(4): 653 doi: 10.1016/0009-2509(67)80048-4
    [30]
    劉連峰, 王振陽, 王超. 球形和方形濕顆粒團的碰撞模擬研究. 應用力學學報, 2020, 37(5):1929

    Liu L F, Wang Z Y, Wang C. Simulations of impact attrition of cuboidal and spherical wet agglomerate of fine particles. Chin J Appl Mech, 2020, 37(5): 1929
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(7)  / Tables(7)

    Article views (536) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频