Citation: | XU Gang, LI Min, Lü Zhi-min, XU Jin-wu. Online intelligent product quality monitoring method based on machine learning[J]. Chinese Journal of Engineering, 2022, 44(4): 730-743. doi: 10.13374/j.issn2095-9389.2021.06.22.001 |
[1] |
Communication Promoters Group of the Industry-Science. Recommendations for Implementing the Strategic Initiative Industrie 4.0, 2013,http://www.acatech.de/industrie4.0
|
[2] |
中國電子技術標準研究院. 工業大數據白皮書(2017版). http://www.cesi.cn/201703/2250.html
China Electronics Standardization Institute. Industrial Big Data White Paper (2017 version). http://www.cesi.cn/201703/2250.html
|
[3] |
中國電子技術標準研究院. 信息物理系統白皮書(2017版). http://www.cesi.cn/201703/2251.html
China Electronics Standardization Institute. Cyber-physical System White Paper (2017 version). http://www.cesi.cn/201703/2251.html
|
[4] |
Gehrmann C, Gunnarsson M. A digital twin based industrial automation and control system security architecture. IEEE Trans Ind Inform, 2020, 16(1): 669 doi: 10.1109/TII.2019.2938885
|
[5] |
Tao F, Cheng J F, Qi Q L. IIHub: an industrial Internet-of-things hub toward smart manufacturing based on cyber-physical system. IEEE Trans Ind Inform, 2018, 14(5): 2271 doi: 10.1109/TII.2017.2759178
|
[6] |
Morgan D, Jacobs R. Opportunities and challenges for machine learning in materials science. Annu Rev Mater Res, 2020, 50(1): 71 doi: 10.1146/annurev-matsci-070218-010015
|
[7] |
Pablo J J, Jackson N E, Webb M A, et al. New frontiers for the materials genome initiative. Npj Comput Mater, 2019, 5(1): 1 doi: 10.1038/s41524-018-0138-z
|
[8] |
Kim K, Ward L, He J G, et al. Machine-learning-accelerated high-throughput materials screening: Discovery of novel quaternary Heusler compounds. Phys Rev Materials, 2018, 2(12): 123801 doi: 10.1103/PhysRevMaterials.2.123801
|
[9] |
Boyd P G, Lee Y, Smit B. Computational development of the nanoporous materials genome. Nat Rev Mater, 2017, 2: 17037 doi: 10.1038/natrevmats.2017.37
|
[10] |
Arróyave R, McDowell D L. Systems approaches to materials design: Past, present, and future. Annu Rev Mater Res, 2019, 49(1): 103 doi: 10.1146/annurev-matsci-070218-125955
|
[11] |
Zunger A. Inverse design in search of materials with target functionalities. Nat Rev Chem, 2018, 2: 121 doi: 10.1038/s41570-018-0121
|
[12] |
Sanchez-Lengeling B, Aspuru-Guzik A. Inverse molecular design using machine learning: Generative models for matter engineering. Science, 2018, 361(6400): 360 doi: 10.1126/science.aat2663
|
[13] |
Noé F, Tkatchenko A, Müller K R, et al. Machine learning for molecular simulation. Annu Rev Phys Chem, 2020, 71(1): 361 doi: 10.1146/annurev-physchem-042018-052331
|
[14] |
Wu S, Kondo Y, Kakimoto M A, et al. Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm. Npj Comput Mater, 2019, 5: 66 doi: 10.1038/s41524-019-0203-2
|
[15] |
Butler K T, Davies D W, Cartwright H, et al. Machine learning for molecular and materials science. Nature, 2018, 559(7715): 547 doi: 10.1038/s41586-018-0337-2
|
[16] |
Gomberg J A, Medford A J, Kalidindi S R. Extracting knowledge from molecular mechanics simulations of grain boundaries using machine learning. Acta Mater, 2017, 133: 100 doi: 10.1016/j.actamat.2017.05.009
|
[17] |
Bartók A P, De S, Poelking C, et al. Machine learning unifies the modeling of materials and molecules. Sci Adv, 2017, 3(12): e1701816 doi: 10.1126/sciadv.1701816
|
[18] |
Kourti T. Multivariate analysis for process understanding, monitoring, control, and optimization of lyophilization processes // Quality by Design for Biopharmaceutical Drug Product Development. New York, 2015: 537
|
[19] |
Huang J, Kaul G, Cai C S, et al. Quality by design case study: An integrated multivariate approach to drug product and process development. Int J Pharm, 2009, 382(1-2): 23 doi: 10.1016/j.ijpharm.2009.07.031
|
[20] |
Cui Y, Song X L, Chuang K, et al. Variable selection in multivariate modeling of drug product formula and manufacturing process. J Pharm Sci, 2012, 101(12): 4597 doi: 10.1002/jps.23322
|
[21] |
Kabzan J, Hewing L, Liniger A, et al. Learning-based model predictive control for autonomous racing. IEEE Robotics Autom Lett, 2019, 4(4): 3363 doi: 10.1109/LRA.2019.2926677
|
[22] |
Xu G, Li M, Xu J W. Application research of on-line quality control method to metallurgical products // 2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). Macao, 2019: 390
|
[23] |
Hertneck M, K?hler J, Trimpe S, et al. Learning an approximate model predictive controller with guarantees. IEEE Control Syst Lett, 2018, 2(3): 543 doi: 10.1109/LCSYS.2018.2843682
|
[24] |
Mesbah A. Stochastic model predictive control: An overview and perspectives for future research. IEEE Control Syst Mag, 2016, 36(6): 30 doi: 10.1109/MCS.2016.2602087
|
[25] |
Balta E C, Lin Y K, Barton K, et al. Production as a service: A digital manufacturing framework for optimizing utilization. IEEE Trans Autom Sci Eng, 2018, 15(4): 1483 doi: 10.1109/TASE.2018.2842690
|
[26] |
DeSmit Z, Elhabashy A E, Wells L J, et al. An approach to cyber-physical vulnerability assessment for intelligent manufacturing systems. J Manuf Syst, 2017, 43: 339 doi: 10.1016/j.jmsy.2017.03.004
|
[27] |
Michniewicz J, Reinhart G. Cyber-physical-robotics-modelling of modular robot cells for automated planning and execution of assembly tasks. Mechatronics, 2016, 34: 170 doi: 10.1016/j.mechatronics.2015.04.012
|
[28] |
Pirvu B C, Zamfirescu C B, Gorecky D. Engineering insights from an anthropocentric cyber-physical system: A case study for an assembly station. Mechatronics, 2016, 34: 147 doi: 10.1016/j.mechatronics.2015.08.010
|
[29] |
Jiang P Y, Ding K, Leng J W. Towards a cyber-physical-social-connected and service-oriented manufacturing paradigm: Social Manufacturing. Manuf Lett, 2016, 7: 15 doi: 10.1016/j.mfglet.2015.12.002
|
[30] |
Zawadzki P, ?ywicki K. Smart product design and production control for effective mass customization in the industry 4.0 concept. Manag Prod Eng Rev, 2016, 7(3): 105
|
[31] |
Yao X F, Lin Y Z. Emerging manufacturing paradigm shifts for the incoming industrial revolution. Int J Adv Manuf Technol, 2016, 85(5-8): 1665 doi: 10.1007/s00170-015-8076-0
|
[32] |
徐鋼. CPS在冶金產品質量在線管控中應用研究[學位論文]. 北京: 北京科技大學, 2019
Xu G. Application Research of CPS in On-Line Quality Control to Metallurgical Products [Dissertation]. Beijing: University of Science and Technology Beijing, 2019
|
[33] |
徐金梧. 冶金生產過程質量監控理論與方法. 北京: 冶金工業出版社, 2015
Xu J W. Quality Control Theory and Method of Metallurgical Production Process. Beijing: Metallurgical Industry Press, 2015
|
[34] |
Jolliffe I T, Cadima J. Principal component analysis: A review and recent developments. Phil Trans R Soc A, 2016, 374(2065): 20150202 doi: 10.1098/rsta.2015.0202
|
[35] |
Tabora J E, Domagalski N. Multivariate analysis and statistics in pharmaceutical process research and development. Annu Rev Chem Biomol Eng, 2017, 8: 403 doi: 10.1146/annurev-chembioeng-060816-101418
|
[36] |
Johnson R A, Wichern D W. Applied Multivariate Statistical Analysis, 5th edition. Prentice Hall, 2002
|
[37] |
Tax D M J, Duin R P W. Support vector data description. Mach Learn, 2004, 54(1): 45 doi: 10.1023/B:MACH.0000008084.60811.49
|
[38] |
Zimek A, Schubert E, Kriegel H P. A survey on unsupervised outlier detection in high-dimensional numerical data. Stat Anal Data Min:ASA Data Sci J, 2012, 5(5): 363 doi: 10.1002/sam.11161
|
[39] |
Gang X. Online monitoring and control method of product quality based on embedded cyber-physical system models. J Mech Eng, 2017, 53(12): 94 doi: 10.3901/JME.2017.12.094
|
[40] |
Shawe-Taylor J, Cristianini N. Kernel Methods for Pattern Analysis. Cambridge: Cambridge University Press, 2004
|
[41] |
Volpi M, Tuia D, Camps-Valls G, et al. Unsupervised change detection with kernels. IEEE Geosci Remote Sens Lett, 2012, 9(6): 1026 doi: 10.1109/LGRS.2012.2189092
|
[42] |
Li M, Xu J W, Yang J H, et al. Multiple manifolds analysis and its application to fault diagnosis. Mech Syst Signal Process, 2009, 23(8): 2500 doi: 10.1016/j.ymssp.2009.05.001
|
[43] |
Belkin M, Niyogi P, Sindhwani V. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res, 2006, 7: 2399
|
[44] |
Zhang Z, Zha H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM J Sci Comput, 2004, 26(1): 313 doi: 10.1137/S1064827502419154
|
[45] |
Saul L K, Roweis S T. Think globally, fit locally: unsupervised learning of low dimensional manifolds. J Mach Learn Res, 2003, 4: 119
|