Citation: | WANG Deng-ke, WU Yan, WEI Jian-ping, ZHAO Xiao-long, ZHANG Hong-tu, ZHU Chuan-qi, YUAN An-ying. Fracture dynamic evolution features of a coal-containing gas based on gray level co-occurrence matrix and industrial CT scanning[J]. Chinese Journal of Engineering, 2023, 45(1): 31-43. doi: 10.13374/j.issn2095-9389.2021.06.17.008 |
[1] |
Hou Z M, Xie H P, Zhou H W, et al. Unconventional gas resources in China. Environ Earth Sci, 2015, 73(10): 5785 doi: 10.1007/s12665-015-4393-8
|
[2] |
Li S, Tang D Z, Pan Z J, et al. Evaluation of coalbed methane potential of different reservoirs in western Guizhou and eastern Yunnan, China. Fuel, 2015, 139: 257 doi: 10.1016/j.fuel.2014.08.054
|
[3] |
Clarkson C R, Bustin R M. The effect of pore structure and gas pressure upon the transport properties of coal: A laboratory and modeling study. 1. Isotherms and pore volume distributions. Fuel, 1999, 78(11): 1333
|
[4] |
Wang D K, Lü R, Wei J P, et al. An experimental study of seepage properties of gas-saturated coal under different loading conditions. Energy Sci Eng, 2019, 7(3): 799 doi: 10.1002/ese3.309
|
[5] |
Wang D K, Lü R, Wei J P, et al. An experimental study of the anisotropic permeability rule of coal containing gas. J Nat Gas Sci Eng, 2018, 53: 67 doi: 10.1016/j.jngse.2018.02.026
|
[6] |
Zhou S D, Liu D M, Cai Y D, et al. Multi-scale fractal characterizations of lignite, subbituminous and high-volatile bituminous coals pores by mercury intrusion porosimetry. J Nat Gas Sci Eng, 2017, 44: 338 doi: 10.1016/j.jngse.2017.04.021
|
[7] |
Li H Y, Ogawa Y, Shimada S. Mechanism of methane flow through sheared coals and its role on methane recovery. Fuel, 2003, 82(10): 1271 doi: 10.1016/S0016-2361(03)00020-6
|
[8] |
Zhao J L, Xu H, Tang D Z, et al. Coal seam porosity and fracture heterogeneity of macrolithotypes in the Hancheng Block, eastern margin, Ordos Basin, China. Int J Coal Geol, 2016, 159: 18 doi: 10.1016/j.coal.2016.03.019
|
[9] |
Qi L L, Tang X, Wang Z F, et al. Pore characterization of different types of coal from coal and gas outburst disaster sites using low temperature nitrogen adsorption approach. Int J Min Sci Technol, 2017, 27(2): 371 doi: 10.1016/j.ijmst.2017.01.005
|
[10] |
Ni X M, Chen W X, Li Z Y, et al. Reconstruction of different scales of pore-fractures network of coal reservoir and its permeability prediction with Monte Carlo method. Int J Min Sci Technol, 2017, 27(4): 693 doi: 10.1016/j.ijmst.2017.05.021
|
[11] |
Giffin S, Littke R, Klaver J, et al. Application of BIB-SEM technology to characterize macropore morphology in coal. Int J Coal Geol, 2013, 114: 85 doi: 10.1016/j.coal.2013.02.009
|
[12] |
Zhao Y X, Sun Y F, Liu S M, et al. Pore structure characterization of coal by NMR cryoporometry. Fuel, 2017, 190: 359 doi: 10.1016/j.fuel.2016.10.121
|
[13] |
Sun C R, Tang S H, Zhang S H, et al. Nanopore characteristics of Late Paleozoic transitional facies coal-bearing shale in Ningwu basin, China investigated by nuclear magnetic resonance and low-pressure nitrogen adsorption. J Nanosci Nanotechnol, 2017, 17(9): 6433 doi: 10.1166/jnn.2017.14477
|
[14] |
Zhao Y X, Zhu G P, Dong Y H, et al. Comparison of low-field NMR and microfocus X-ray computed tomography in fractal characterization of pores in artificial cores. Fuel, 2017, 210: 217 doi: 10.1016/j.fuel.2017.08.068
|
[15] |
Zhao Y X, Sun Y F, Liu S M, et al. Pore structure characterization of coal by synchrotron radiation nano-CT. Fuel, 2018, 215: 102 doi: 10.1016/j.fuel.2017.11.014
|
[16] |
王登科, 張平, 浦海, 等. 溫度沖擊下煤體裂隙結構演化的顯微CT實驗研究. 巖石力學與工程學報, 2018, 37(10):2243
Wang D K, Zhang P, Pu H, et al. Experimental research on crack evolution of coal under temperature impact based on industrial Micro-CT. Chin J Rock Mech Eng, 2018, 37(10): 2243
|
[17] |
Zhang H T, Wang D K, Yu C, et al. Microcrack evolution and permeability enhancement due to thermal shocks in coal. PLoS One, 2020, 15(5): e0232182 doi: 10.1371/journal.pone.0232182
|
[18] |
Chen Y L, Zuo J P, Liu D J, et al. Deformation failure characteristics of coal-rock combined body under uniaxial compression: Experimental and numerical investigations. Bull Eng Geol Environ, 2019, 78(5): 3449 doi: 10.1007/s10064-018-1336-0
|
[19] |
Kong X G, Wang E Y, Hu S B, et al. Fractal characteristics and acoustic emission of coal containing methane in triaxial compression failure. J Appl Geophys, 2016, 124: 139 doi: 10.1016/j.jappgeo.2015.11.018
|
[20] |
Cai Y D, Liu D M, Mathews J P, et al. Permeability evolution in fractured coal: Combining triaxial confinement with X-ray computed tomography, acoustic emission and ultrasonic techniques. Int J Coal Geol, 2014, 122: 91 doi: 10.1016/j.coal.2013.12.012
|
[21] |
Fu H J, Tang D Z, Xu T, et al. Characteristics of pore structure and fractal dimension of low-rank coal: A case study of Lower Jurassic Xishanyao coal in the southern Junggar Basin, NW China. Fuel, 2017, 193: 254 doi: 10.1016/j.fuel.2016.11.069
|
[22] |
Cai Y D, Liu D M, Pan Z J, et al. Investigating the effects of seepage-pores and fractures on coal permeability by fractal analysis. Transp Porous Media, 2016, 111(2): 479 doi: 10.1007/s11242-015-0605-7
|
[23] |
Pan J N, Wang K, Hou Q L, et al. Micro-pores and fractures of coals analysed by field emission scanning electron microscopy and fractal theory. Fuel, 2016, 164: 277 doi: 10.1016/j.fuel.2015.10.011
|
[24] |
Klobes P, Riesemeier H, Meyer K, et al. Rock porosity determination by combination of X-ray computerized tomography with mercury porosimetry. Fresenius' J Anal Chem, 1997, 357(5): 543 doi: 10.1007/s002160050210
|
[25] |
Sui L L, Yu J, Cang D B, et al. The fractal description model of rock fracture networks characterization. Chaos Solitons Fractals, 2019, 129: 71 doi: 10.1016/j.chaos.2019.07.055
|
[26] |
Liu S M, Wang D K, Yin G Z, et al. Experimental study on the microstructure evolution laws in coal seam affected by temperature impact. Rock Mech Rock Eng, 2020, 53(3): 1359 doi: 10.1007/s00603-019-01978-3
|
[27] |
Tao K, Zheng W. Real-time damage assessment of hydrous sandstone based on synergism of AE-CT techniques. Eng Fail Anal, 2018, 91: 465 doi: 10.1016/j.engfailanal.2018.04.046
|
[28] |
Takano D, Lenoir N, Otani J, et al. Localised deformation in a wide-grained sand under triaxial compression revealed by X-ray tomography and digital image correlation. Soils Found, 2015, 55(4): 906 doi: 10.1016/j.sandf.2015.06.020
|
[29] |
Watanabe Y, Lenoir N, Otani J, et al. Displacement in sand under triaxial compression by tracking soil particles on X-ray CT data. Soils Found, 2012, 52(2): 312 doi: 10.1016/j.sandf.2012.02.008
|
[30] |
Tao S, Pan Z J, Chen S D, et al. Coal seam porosity and fracture heterogeneity of marcolithotypes in the Fanzhuang Block, southern Qinshui Basin, China. J Nat Gas Sci Eng, 2019, 66: 148 doi: 10.1016/j.jngse.2019.03.030
|
[31] |
Wang Z Z, Pan J N, Hou Q L, et al. Anisotropic characteristics of low-rank coal fractures in the Fukang mining area, China. Fuel, 2018, 211: 182 doi: 10.1016/j.fuel.2017.09.067
|
[32] |
王登科, 張平, 魏建平, 等. CT可視化的受載煤體三維裂隙結構動態演化試驗研究. 煤炭學報, 2019, 44(增刊2): 574
Wang D K, Zhang P, Wei J P, et al. Research on dynamic evolution of 3D fracture structure of loaded coal body based on CT visualization. J China Coal Soc, 2019, 44(Suppl 2): 574
|
[33] |
Yao Y B, Liu D M, Che Y, et al. Non-destructive characterization of coal samples from China using microfocus X-ray computed tomography. Int J Coal Geol, 2009, 80(2): 113 doi: 10.1016/j.coal.2009.08.001
|
[34] |
馮子軍, 趙陽升. 煤的熱解破裂過程—孔裂隙演化的顯微CT細觀特征. 煤炭學報, 2015, 40(1):103
Feng Z J, Zhao Y S. Pyrolytic cracking in coal: Meso-characteristics of pore and fissure evolution observed by micro-CT. J China Coal Soc, 2015, 40(1): 103
|
[35] |
王登科, 張平, 劉淑敏, 等. 溫度沖擊下煤層內部孔縫結構演化特征實驗研究. 煤炭學報, 2018, 43(12):3395
Wang D K, Zhang P, Liu S M, et al. Experimental study on evolutionary characteristics of pore-fissure structure in coal seam under temperature impact. J China Coal Soc, 2018, 43(12): 3395
|
[36] |
Wang D K, Zhang P, Wei J P, et al. The seepage properties and permeability enhancement mechanism in coal under temperature shocks during unloading confining pressures. J Nat Gas Sci Eng, 2020, 77: 103242 doi: 10.1016/j.jngse.2020.103242
|
[37] |
Wang G, Shen J N, Liu S M, et al. Three-dimensional modeling and analysis of macro-pore structure of coal using combined X-ray CT imaging and fractal theory. Int J Rock Mech Min Sci, 2019, 123: 104082 doi: 10.1016/j.ijrmms.2019.104082
|
[38] |
毛靈濤, 連秀云, 郝耐, 等. 基于數字體散斑法煤樣內部三維應變場的測量. 煤炭學報, 2015, 40(1):65
Mao L T, Lian X Y, Hao N, et al. 3D strain measurement in coal using digital volumetric speckle photography. J China Coal Soc, 2015, 40(1): 65
|
[39] |
王登科, 曾凡超, 王建國, 等. 顯微工業CT的受載煤樣裂隙動態演化特征與分形規律研究. 巖石力學與工程學報, 2020, 39(6):1165
Wang D K, Zeng F C, Wang J G, et al. Dynamic evolution characteristics and fractal law of loaded coal fractures by micro industrial CT. Chin J Rock Mech Eng, 2020, 39(6): 1165
|
[40] |
Zhang Y H, Xu X M, Lebedev M, et al. Multi-scale X-ray computed tomography analysis of coal microstructure and permeability changes as a function of effective stress. Int J Coal Geol, 2016, 165: 149 doi: 10.1016/j.coal.2016.08.016
|
[41] |
宋紅華, 趙毅鑫, 姜耀東, 等. 單軸受壓條件下煤巖非均質性對其破壞特征的影響. 煤炭學報, 2017, 42(12):3125
Song H H, Zhao Y X, Jiang Y D, et al. Influence of heterogeneity on the failure characteristics of coal under uniaxial compression condition. J China Coal Soc, 2017, 42(12): 3125
|
[42] |
Duan Y T, Li X, Ranjith P G, et al. An investigation of the evolution of the internal structures and failure modes of Longmaxi shale using novel X-ray microscopy. J Petroleum Sci Eng, 2020, 184: 106479 doi: 10.1016/j.petrol.2019.106479
|
[43] |
Zhou H W, Zhong J C, Ren W G, et al. Characterization of pore-fracture networks and their evolution at various measurement scales in coal samples using X-ray μCT and a fractal method. Int J Coal Geol, 2018, 189: 35 doi: 10.1016/j.coal.2018.02.007
|
[44] |
Hao D Y, Tu S H, Zhang C, et al. Quantitative characterization and three-dimensional reconstruction of bituminous coal fracture development under rock mechanics testing. Fuel, 2020, 267: 117280 doi: 10.1016/j.fuel.2020.117280
|
[45] |
Lu X, Armstrong R T, Mostaghimi P. High-pressure X-ray imaging to interpret coal permeability. Fuel, 2018, 226: 573 doi: 10.1016/j.fuel.2018.03.172
|
[46] |
Ju Y, Xi C D, Zhang Y, et al. Laboratory in situ CT observation of the evolution of 3D fracture networks in coal subjected to confining pressures and axial compressive loads: A novel approach. Rock Mech Rock Eng, 2018, 51(11): 3361 doi: 10.1007/s00603-018-1459-4
|
[47] |
Ju Y, Zhang Q G, Zheng J T, et al. Experimental study on CH4 permeability and its dependence on interior fracture networks of fractured coal under different excavation stress paths. Fuel, 2017, 202: 483 doi: 10.1016/j.fuel.2017.04.056
|
[48] |
Stappen J F V, Meftah R, Boone M A, et al. In situ triaxial testing to determine fracture permeability and aperture distribution for CO2 sequestration in svalbard, Norway. Environ Sci Technol, 2018, 52(8): 4546 doi: 10.1021/acs.est.8b00861
|
[49] |
Schlüter S, Sheppard A, Brown K, et al. Image processing of multiphase images obtained via X-ray microtomography: A review. Water Resour Res, 2014, 50(4): 3615 doi: 10.1002/2014WR015256
|
[50] |
Voorn M, Exner U, Rath A. Multiscale Hessian fracture filtering for the enhancement and segmentation of narrow fractures in 3D image data. Comput Geosci, 2013, 57: 44 doi: 10.1016/j.cageo.2013.03.006
|
[51] |
Haralick R M, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst,Man,Cybern, 1973, SMC-3(6): 610 doi: 10.1109/TSMC.1973.4309314
|
[52] |
Singh A, Armstrong R T, Regenauer-Lieb K, et al. Rock characterization using gray-level co-occurrence matrix: An objective perspective of digital rock statistics. Water Resour Res, 2019, 55(3): 1912 doi: 10.1029/2018WR023342
|
[53] |
Kabir S, Rivard P, He D C, et al. Damage assessment for concrete structure using image processing techniques on acoustic borehole imagery. Constr Build Mater, 2009, 23(10): 3166 doi: 10.1016/j.conbuildmat.2009.06.013
|
[54] |
Malegori C, Franzetti L, Guidetti R, et al. GLCM, an image analysis technique for early detection of biofilm. J Food Eng, 2016, 185: 48 doi: 10.1016/j.jfoodeng.2016.04.001
|
[55] |
Arabi P M, Joshi G, Vamsha D N. Performance evaluation of GLCM and pixel intensity matrix for skin texture analysis. Perspect Sci, 2016, 8: 203 doi: 10.1016/j.pisc.2016.03.018
|
[56] |
Tahir M. Pattern analysis of protein images from fluorescence microscopy using gray level co-occurrence matrix. J King Saud Univ Sci, 2018, 30(1): 29 doi: 10.1016/j.jksus.2016.12.004
|
[57] |
Kabir S. Imaging-based detection of AAR induced map-crack damage in concrete structure. NDT E Int, 2010, 43(6): 461 doi: 10.1016/j.ndteint.2010.04.007
|
[58] |
徐金明, 韓娜娜, 李巖松. 石灰巖局部化變形的圖像特征. 巖石力學與工程學報, 2010, 29(10):2110
Xu J M, Han N N, Li Y S. Image features of localized deformation of limestone. Chin J Rock Mech Eng, 2010, 29(10): 2110
|
[59] |
Zhu L, Dang F N, Xue Y, et al. Analysis of micro-structural damage evolution of concrete through coupled X-ray computed tomography and gray-level co-occurrence matrices method. Constr Build Mater, 2019, 224: 534 doi: 10.1016/j.conbuildmat.2019.07.007
|
[60] |
Wang P H, Qiao H X, Zhang Y S, et al. Meso-damage evolution analysis of magnesium oxychloride cement concrete based on X-CT and grey-level co-occurrence matrix. Constr Build Mater, 2020, 255: 119373 doi: 10.1016/j.conbuildmat.2020.119373
|
[61] |
孫可明, 王金彧, 辛利偉. 不同應力差條件下超臨界CO2氣爆煤巖體氣楔作用次生裂紋擴展規律研究. 應用力學學報, 2019, 36(2):466
Sun K M, Wang J Y, Xin L W. Research on the law of secondary cracks propagation in coal and rock caused by gas wedging during supercritical CO2 explosion under different stress differences. Chin J Appl Mech, 2019, 36(2): 466
|
[62] |
Wang H Y, Liu Y Z, Dong D Z, et al. Scientific issues on effective development of marine shale gas in Southern China. Petroleum Explor Dev, 2013, 40(5): 615 doi: 10.1016/S1876-3804(13)60080-4
|
[63] |
Ma T S, Chen P. Study of meso-damage characteristics of shale hydration based on CT scanning technology. Petroleum Explor Dev, 2014, 41(2): 249 doi: 10.1016/S1876-3804(14)60029-X
|
[64] |
Cui J, Liu D M, Cai Y D, et al. Insights into fractures and minerals in subbituminous and bituminous coals by FESEM-EDS and X-ray μ-CT. Fuel, 2019, 237: 977 doi: 10.1016/j.fuel.2018.10.062
|
[65] |
Singhal B B S, Gupta R P. Applied Hydrogeology of Fractured Rocks. Dordrecht: Springer Netherlands, 2010
|
[66] |
Honeycutt C E, Plotnick R. Image analysis techniques and gray-level co-occurrence matrices (GLCM) for calculating bioturbation indices and characterizing biogenic sedimentary structures. Comput Geosci, 2008, 34(11): 1461 doi: 10.1016/j.cageo.2008.01.006
|
[67] |
Lloyd K, Rosin P L, Marshall D, et al. Detecting violent and abnormal crowd activity using temporal analysis of grey level co-occurrence matrix (GLCM)-based texture measures. Mach Vis Appl, 2017, 28(3-4): 361 doi: 10.1007/s00138-017-0830-x
|