<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
LUO Hao, FENG Tian-zhen, YU Jing-kang, PAN Yi-shan, ZHANG Li. Crowdsensing location method of mining-induced seismicity based on the phone mobile sensor network[J]. Chinese Journal of Engineering, 2022, 44(12): 2017-2028. doi: 10.13374/j.issn2095-9389.2021.06.16.007
Citation: LUO Hao, FENG Tian-zhen, YU Jing-kang, PAN Yi-shan, ZHANG Li. Crowdsensing location method of mining-induced seismicity based on the phone mobile sensor network[J]. Chinese Journal of Engineering, 2022, 44(12): 2017-2028. doi: 10.13374/j.issn2095-9389.2021.06.16.007

Crowdsensing location method of mining-induced seismicity based on the phone mobile sensor network

doi: 10.13374/j.issn2095-9389.2021.06.16.007
More Information
  • Corresponding author: E-mail:luohao8711@163.com
  • Received Date: 2021-06-16
    Available Online: 2021-10-21
  • Publish Date: 2022-12-01
  • To improve the positioning accuracy of a mining-induced seismicity monitoring system, reduce the monitoring blind area, and reduce the monitoring cost, based on the distributed idea, this paper proposes a positioning method of mining-induced seismicity based on the smartphone sensor network. First, smartphones used by workers and their families near the mining area were utilized to establish a mobile sensor network. Second, the simulated source points were meshed, and the objective function based on the standard deviation was constructed. An improved firefly optimization strategy was proposed. The inflection point backtracking method and smartphone sensor network exclude the discrete points strategy, namely, EDPS, to reduce the positioning error. Verification is done by the simulation experiment of the mining-induced seismicity location. Experimental results show that under the ideal condition of no arrival time error in the smartphone sensor network, all simulated source points can converge to the source position accurately with a positioning error of less than 1 m. However, compared to the detector, the arrival error of the smartphone is higher, and the positioning error is correlated with the arrival error. When the mobile phone arrival error is ?1.0–1.0 s, the traditional algorithm positioning error is 216 m, which cannot achieve high-accuracy positioning. Researching the relationship between objective function value and positioning error, this work proposes and uses two optimization methods: (1) inflection point backtracking method and (2) EDPS. The absolute positioning error of the algorithm is reduced to 73 m. When the time error is ?0.2–0.2 s, the absolute positioning error is reduced to 17 m, and the positioning accuracy is improved by 76.1%. The location method of the mining-induced seismicity based on the crowdsensing of a phone mobile sensor network provides a new method for mining-induced seismicity monitoring. It can be considered to combine with an underground microseismic system in the future, which is of great significance in saving the monitoring cost and improving the positioning accuracy.

     

  • loading
  • [1]
    姜耀東, 潘一山, 姜福興, 等. 我國煤炭開采中的沖擊地壓機理和防治. 煤炭學報, 2014, 39(2):205 doi: 10.13225/j.cnki.jccs.2013.0024

    Jiang Y D, Pan Y S, Jiang F X, et al. State of the art review on mechanism and prevention of coal bumps in China. J China Coal Soc, 2014, 39(2): 205 doi: 10.13225/j.cnki.jccs.2013.0024
    [2]
    齊慶新, 潘一山, 李海濤, 等. 煤礦深部開采煤巖動力災害防控理論基礎與關鍵技術. 煤炭學報, 2020, 45(5):1567 doi: 10.13225/j.cnki.jccs.DY20.0453

    Qi Q X, Pan Y S, Li H T, et al. Theoretical basis and key technology of prevention and control of coal-rock dynamic disasters in deep coal mining. J China Coal Soc, 2020, 45(5): 1567 doi: 10.13225/j.cnki.jccs.DY20.0453
    [3]
    姜福興. 微震監測技術在礦井巖層破裂監測中的應用. 巖土工程學報, 2002, 24(2):147 doi: 10.3321/j.issn:1000-4548.2002.02.004

    Jiang F X. Application of microseismic monitoring technology of strata fracturing in underground coal mine. Chin J Geotech Eng, 2002, 24(2): 147 doi: 10.3321/j.issn:1000-4548.2002.02.004
    [4]
    張達, 戴銳, 曾志毅, 等. BSN礦山微震監測技術及其應用. 中國地震, 2021, 37(2):332 doi: 10.3969/j.issn.1001-4683.2021.02.008

    Zhang D, Dai R, Zeng Z Y, et al. Technology and application of BSN microseismic monitoring in mines. J Earthq Res China, 2021, 37(2): 332 doi: 10.3969/j.issn.1001-4683.2021.02.008
    [5]
    潘一山, 趙揚鋒, 官福海, 等. 礦震監測定位系統的研究及應用. 巖石力學與工程學報, 2007, 26(5):1002 doi: 10.3321/j.issn:1000-6915.2007.05.020

    Pan Y S, Zhao Y F, Guan F H, et al. Study on rockburst monitoring and orientation system and its application. Chin J Rock Mech Eng, 2007, 26(5): 1002 doi: 10.3321/j.issn:1000-6915.2007.05.020
    [6]
    國家礦山安全監察局. 國家煤礦安監局辦公室 中國地震局辦公室關于建立沖擊地壓礦井地震信息共享機制的通知[J/OL]. 國家礦山安全監察局網站 (2020-06-04) [2021-06-16].https://www.chinamine-safety.gov.cn/zfxxgk/fdzdgknr/tzgg/202006/t20200604_353526.shtml

    National Mine Safety Supervision Bureau. Notice of the office of the state administration of coal mine safety and the office of the china earthquake administration on the establishment of a seismic information sharing mechanism for rockburst mines[J/OL]. National Mine Safety Supervision Bureau website (2020-06-04) [2021-06-16].https://www.chinamine-safety.gov.cn/zfxxgk/fdzdgknr/tzgg/202006/t20200604_353526.shtml
    [7]
    周美波, 吳建星. 震源定位新方法中傳感器的空間布置. 現代礦業, 2015, 31(2):99 doi: 10.3969/j.issn.1674-6082.2015.02.032

    Zhou M B, Wu J X. Spatial arrangement of sensors in a new source location method. Mod Min, 2015, 31(2): 99 doi: 10.3969/j.issn.1674-6082.2015.02.032
    [8]
    Kong Q K, Allen R M, Schreier L, et al. MyShake: A smartphone seismic network for earthquake early warning and beyond. Sci Adv, 2016, 2(2): e1501055 doi: 10.1126/sciadv.1501055
    [9]
    李小光. 基于手機加速度計的地震事件檢測方法研究[學位論文]. 武漢: 武漢大學, 2017

    Li X G. Seismic Event Detection Based on Smartphone Accelerometer [Dissertation]. Wuhan: Wuhan University, 2017
    [10]
    裴艷宇, 楊小彬, 傳金平, 等. 一維卷積神經網絡特征提取下微震能級時序預測. 工程科學學報, 2021, 43(7):1003

    Pei Y Y, Yang X B, Chuan J P, et al. Time series prediction of microseismic energy level based on feature extraction of onedimensional convolutional neural network. Chin J Eng, 2021, 43(7): 1003
    [11]
    齊慶新, 潘一山, 舒龍勇, 等. 煤礦深部開采煤巖動力災害多尺度分源防控理論與技術架構. 煤炭學報2018, 43(7): 1801

    Qi Q X, Pan Y S, Shu L Y, et al. Theory and technical framework of prevention and control with different sources in multi-scales for coal and rock dynamic disasters in deep mining of coal mines. J China Coal Soc, 2018, 43(7): 1801
    [12]
    孟宇, 肖小鳳, 趙坤. 基于UWB的地下定位算法和拓撲優化. 工程科學學報, 2018, 40(6):743

    Meng Y, Xiao X F, Zhao K. An underground localization algorithm and topology optimization based on ultra-wideban. Chin J Eng, 2018, 40(6): 743
    [13]
    逄煥東, 姜福興, 張興民. 微地震的線性方程定位求解及其病態處理. 巖土力學, 2004, 25(增刊1): 60

    Pang H D, Jiang F X, Zhang X M. Study on nonhomogeneous material's AE by image processing method. J Rock Soil Mech, 2004, 25(Suppl 1): 60
    [14]
    范千, 許承權, 陳偉. 單純形——模擬退火混合算法及其在參數估計中的應用. 地理空間信息, 2005, 3(3):57 doi: 10.3969/j.issn.1672-4623.2005.03.024

    Fan Q, Xu C Q, Chen W. Simplex-annealing hybrid method and its application to parameter estimation. Geospat Inf, 2005, 3(3): 57 doi: 10.3969/j.issn.1672-4623.2005.03.024
    [15]
    呂進國, 姜耀東, 趙毅鑫, 等. 基于穩健模擬退火-單純形混合算法的微震定位研究. 巖土力學, 2013, 34(8):2195 doi: 10.16285/j.rsm.2013.08.024

    Lü J G, Jiang Y D, Zhao Y X, et al. Study of microseismic positioning based on steady simulated annealing-simplex hybrid algorithm. Rock Soil Mech, 2013, 34(8): 2195 doi: 10.16285/j.rsm.2013.08.024
    [16]
    姜天琪, 裴爍瑾. 基于網格搜索?牛頓迭代法的微震震源定位算法. 礦業科學學報, 2019, 4(6):480

    Jiang T Q, Pei S J. Micro-seismic event location based on Newton iteration method and grid-search method. J Min Sci Technol, 2019, 4(6): 480
    [17]
    王瑞, 肖冰松. 基于改進鴿群優化和馬爾可夫鏈的多無人機協同搜索方法. 工程科學學報, 2019, 41(10):1342

    Wang R, Xiao B S. Cooperative search for multi-UAVs via an improved pigeon-inspired optimization and Markov chain approach. Chin J Eng, 2019, 41(10): 1342
    [18]
    Yang W, Chen L, Wang Y, et al. Multi/many-objective particle swarm optimization algorithm based on competition mechanism. Comput Intell Neurosci, 2020: 5132803
    [19]
    陳炳瑞, 馮夏庭, 李庶林, 等. 基于粒子群算法的巖體微震源分層定位方法. 巖石力學與工程學報, 2009, 28(4):740 doi: 10.3321/j.issn:1000-6915.2009.04.012

    Chen B R, Feng X T, Li S L, et al. Microseism source location with hierarchical strategy based on particle swarm optimization. Chin J Rock Mech Eng, 2009, 28(4): 740 doi: 10.3321/j.issn:1000-6915.2009.04.012
    [20]
    王大川. 基于手機加速度數據的特征提取和行為識別研究[學位論文]. 蘭州: 蘭州大學, 2017

    Wang D C. Feature Extraction and Activity Recognition Based on Phone Acceleration Data [Dissertation]. Lanzhou: Lanzhou University, 2017
    [21]
    馮劍紅, 李國良, 馮建華. 眾包技術研究綜述. 計算機學報, 2015, 38(9):1713 doi: 10.11897/SP.J.1016.2015.01713

    Feng J H, Li G L, Feng J H. A survey on crowdsourcing. Chin J Comput, 2015, 38(9): 1713 doi: 10.11897/SP.J.1016.2015.01713
    [22]
    梁欽沛. 基于移動終端的群智感知中情境識別方法的研究與實現[學位論文]. 廣州: 華南理工大學, 2013

    Liang Q P. Research and Implementation of Context-Aware in Crowd Sensing Based on Mobile Terminals [Dissertation]. Guangzhou: South China University of Technology, 2013
    [23]
    宋妍, 朱爽. 基于NTP的網絡時間服務系統的研究. 計算機工程與應用, 2003, 39(36):147 doi: 10.3321/j.issn:1002-8331.2003.36.048

    Song Y, Zhu S. A network time service system based on NTP. Comput Eng Appl, 2003, 39(36): 147 doi: 10.3321/j.issn:1002-8331.2003.36.048
    [24]
    劉長平, 葉春明. 一種新穎的仿生群智能優化算法: 螢火蟲算法. 計算機應用研究, 2011, 28(9):3295 doi: 10.3969/j.issn.1001-3695.2011.09.024

    Liu C P, Ye C M. Novel bioinspired swarm intelligence optimization algorithm: Firefly algorithm. Appl Res Comput, 2011, 28(9): 3295 doi: 10.3969/j.issn.1001-3695.2011.09.024
    [25]
    Khan A, Hizam H, Wahab N I A, et al. Optimal power flow using hybrid firefly and particle swarm optimization algorithm. Plos One, 2020, 15(8): e0235668 doi: 10.1371/journal.pone.0235668
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(14)  / Tables(5)

    Article views (472) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频