<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
LIU Jian, QIAO Lan, LI Qing-wen, ZHAO Guo-yan. Analytical solutions of fracture parameters for a centrally cracked Brazilian disk considering the loading friction[J]. Chinese Journal of Engineering, 2022, 44(12): 2040-2047. doi: 10.13374/j.issn2095-9389.2021.06.07.006
Citation: LIU Jian, QIAO Lan, LI Qing-wen, ZHAO Guo-yan. Analytical solutions of fracture parameters for a centrally cracked Brazilian disk considering the loading friction[J]. Chinese Journal of Engineering, 2022, 44(12): 2040-2047. doi: 10.13374/j.issn2095-9389.2021.06.07.006

Analytical solutions of fracture parameters for a centrally cracked Brazilian disk considering the loading friction

doi: 10.13374/j.issn2095-9389.2021.06.07.006
More Information
  • Corresponding author: E-mail: lanqiao@ustb.edu.cn
  • Received Date: 2021-06-07
    Available Online: 2021-08-20
  • Publish Date: 2022-12-01
  • A centrally cracked Brazilian disk (CCBD) specimen subjected to a pair of diametral compressive forces has been widely used to study mixed-mode I and II fractures of brittle and quasi-brittle materials. Reasons for using the CCBD are mainly due to its capability to introduce different mode mixities from pure mode I to pure mode II, the existence of closed-form solutions for fracture parameters, and the simple setup of compressive test. In addition to the diametrical concentrated force loading, the partially distributed pressure loading is also an important loading condition for CCBD specimen tests. Using the weight function method, analytical solutions of stress intensity factors and T stress considering the tangential loading friction for a CCBD specimen that is subjected to four typical partially distributed loads were derived, and effects of the boundary friction and load distribution angle on the fracture parameters were also explored. The results obtained are as follows: (1) For short cracks, geometric parameters YI, YII, and T* of pure mode I and II fractures decrease with an increase in the friction coefficient and load distribution angle. However, for long cracks, an increase in the friction coefficient causes an increase in pure mode-I YI, and an increase in the load distribution angle causes an increase in pure mode-II T*; (2) The influence of the load distribution angle on the fracture parameters is the most significant when the distributed pressure follows a constant function form, while it is the least significant for the case of quartic polynomial pressure; (3) The critical loading angle for pure mode II fractures decreases with an increase in the load distribution angle for short cracks, whereas it increases for long cracks. When the load distribution angle is fixed, an increase in friction can raise the critical loading angle for pure mode II fractures. These results have further improved the research of fracture parameters in CCBD specimens.

     

  • loading
  • [1]
    Atkinson C, Smelser R E, Sanchez J. Combined mode fracture via the cracked Brazilian disk test. Int J Fract, 1982, 18(4): 279 doi: 10.1007/BF00015688
    [2]
    Fett T. T-stresses in rectangular plates and circular disks. Eng Fract Mech, 1998, 60(5-6): 631 doi: 10.1016/S0013-7944(98)00038-1
    [3]
    Fett T. Stress intensity factors and T-stress for single and double-edge-cracked circular disks under mixed boundary conditions. Eng Fract Mech, 2002, 69(1): 69 doi: 10.1016/S0013-7944(01)00078-9
    [4]
    Dong S M, Wang Y, Xia Y M. Stress intensity factors for central cracked circular disk subjected to compression. Eng Fract Mech, 2004, 71(7-8): 1135 doi: 10.1016/S0013-7944(03)00120-6
    [5]
    Akbardoost J, Rastin A. Comprehensive data for calculating the higher order terms of crack tip stress field in disk-type specimens under mixed mode loading. Theor Appl Fract Mech, 2015, 76: 75 doi: 10.1016/j.tafmec.2015.01.004
    [6]
    Smith D J, Ayatollahi M R, Pavier M J. The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading. Fatigue Fract Eng Mater Struct, 2001, 24(2): 137 doi: 10.1046/j.1460-2695.2001.00377.x
    [7]
    董卓, 唐世斌, 郎穎嫻. 基于最小應變能密度因子斷裂準則的巖石裂紋水力壓裂研究. 工程科學學報, 2019, 41(4):436

    Dong Z, Tang S B, Lang Y X. Hydraulic fracture prediction theory based on the minimum strain energy density criterion. Chin J Eng, 2019, 41(4): 436
    [8]
    劉紅巖. 考慮T應力的巖石壓剪裂紋起裂機理. 巖土工程學報, 2019, 41(7):1296

    Liu H Y. Initiation mechanism of cracks of rock in compression and shear considering T-stress. Chin J Geotech Eng, 2019, 41(7): 1296
    [9]
    Ayatollahi M R, Aliha M R M. Mixed mode fracture in soda lime glass analyzed by using the generalized MTS criterion. Int J Solids Struct, 2009, 46(2): 311 doi: 10.1016/j.ijsolstr.2008.08.035
    [10]
    Aliha M R M, Ayatollahi M R. Analysis of fracture initiation angle in some cracked ceramics using the generalized maximum tangential stress criterion. Int J Solids Struct, 2012, 49(13): 1877 doi: 10.1016/j.ijsolstr.2012.03.029
    [11]
    Ayatollahi M R, Aliha M R M. On the use of Brazilian disc specimen for calculating mixed mode I-II fracture toughness of rock materials. Eng Fract Mech, 2008, 75(16): 4631 doi: 10.1016/j.engfracmech.2008.06.018
    [12]
    Hua W, Dong S M, Peng F, et al. Experimental investigation on the effect of wetting-drying cycles on mixed mode fracture toughness of sandstone. Int J Rock Mech Min Sci, 2017, 93: 242 doi: 10.1016/j.ijrmms.2017.01.017
    [13]
    Yin T B, Wu Y, Wang C, et al. Mixed-mode I + II tensile fracture analysis of thermally treated granite using straight-through notch Brazilian disc specimens. Eng Fract Mech, 2020, 234: 107111 doi: 10.1016/j.engfracmech.2020.107111
    [14]
    Awaji H, Sato S. Combined mode fracture toughness measurement by the disk test. J Eng Mater Technol, 1978, 100(2): 175 doi: 10.1115/1.3443468
    [15]
    Dorogoy A, Banks-Sills L. Effect of crack face contact and friction on Brazilian disk specimens—A finite difference solution. Eng Fract Mech, 2005, 72(18): 2758 doi: 10.1016/j.engfracmech.2005.05.005
    [16]
    Ayatollahi M R, Aliha M R M. Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading. Comput Mater Sci, 2007, 38(4): 660 doi: 10.1016/j.commatsci.2006.04.008
    [17]
    徐積剛, 董世明, 華文. 圍壓對巴西裂紋圓盤應力強度因子影響分析. 巖土力學, 2015, 36(7):1959

    Xu J G, Dong S M, Hua W. Effect of confining pressure on stress intensity factors determined by cracked Brazilian disk. Rock Soil Mech, 2015, 36(7): 1959
    [18]
    Hua W, Xu J G, Dong S M, et al. Effect of confining pressure on stress intensity factors for cracked Brazilian disk. Int J Appl Mechanics, 2015, 7(3): 1550051 doi: 10.1142/S1758825115500519
    [19]
    Hua W, Li Y F, Dong S M, et al. T-stress for a centrally cracked Brazilian disk under confining pressure. Eng Fract Mech, 2015, 149: 37 doi: 10.1016/j.engfracmech.2015.09.048
    [20]
    Hou C, Wang Z Y, Liang W G, et al. Determination of fracture parameters in center cracked circular discs of concrete under diametral loading: A numerical analysis and experimental results. Theor Appl Fract Mech, 2016, 85: 355 doi: 10.1016/j.tafmec.2016.04.006
    [21]
    李一凡, 董世明, 華文. 中心裂紋巴西圓盤壓縮載荷下T應力研究. 巖土力學, 2016, 37(11):3191

    Li Y F, Dong S M, Hua W. T-stress for central cracked Brazilian disk subjected to compression. Rock Soil Mech, 2016, 37(11): 3191
    [22]
    Hou C, Wang Z Y, Liang W G, et al. Investigation of the effects of confining pressure on SIFs and T-stress for CCBD specimens using the XFEM and the interaction integral method. Eng Fract Mech, 2017, 178: 279 doi: 10.1016/j.engfracmech.2017.03.049
    [23]
    Tang S B. Stress intensity factors for a Brazilian disc with a central crack subjected to compression. Int J Rock Mech Min Sci, 2017, 93: 38 doi: 10.1016/j.ijrmms.2017.01.003
    [24]
    董卓, 唐世斌. 圍壓與徑向荷載共同作用下巴西盤裂紋應力強度因子的解析解. 計算力學學報, 2018, 35(2):168 doi: 10.7511/jslx20170221001

    Dong Z, Tang S B. Effect of confining pressure and diametrical force on stress intensity fracture in central cracked disk. Chin J Comput Mech, 2018, 35(2): 168 doi: 10.7511/jslx20170221001
    [25]
    Markides C F, Pazis D N, Kourkoulis S K. Stress intensity factors for the Brazilian disc with a short central crack: Opening versus closing cracks. Appl Math Model, 2011, 35(12): 5636 doi: 10.1016/j.apm.2011.05.013
    [26]
    Hondros G. The evaluation of Poisson's ratio and the modulus of materials of low tensile resistance by the Brazilian (indirect tensile) test with particular reference to concrete. Australian J Appl Sci, 1959, 10(3): 243
    [27]
    Fairhurst C. On the validity of the ‘Brazilian’ test for brittle materials. Int J Rock Mech Min Sci Geomech Abstr, 1964, 1(4): 535 doi: 10.1016/0148-9062(64)90060-9
    [28]
    Hung K M, Ma C C. Theoretical analysis and digital photoelastic measurement of circular disks subjected to partially distributed compressions. Exp Mech, 2003, 43(2): 216
    [29]
    Wei X X, Chau K T. Three dimensional analytical solution for finite circular cylinders subjected to indirect tensile test. Int J Solids Struct, 2013, 50(14-15): 2395 doi: 10.1016/j.ijsolstr.2013.03.026
    [30]
    Japaridze L. Stress-deformed state of cylindrical specimens during indirect tensile strength testing. J Rock Mech Geotech Eng, 2015, 7(5): 509 doi: 10.1016/j.jrmge.2015.06.006
    [31]
    Yu J H, Shang X C, Wu P F. Influence of pressure distribution and friction on determining mechanical properties in the Brazilian test: Theory and experiment. Int J Solids Struct, 2019, 161: 11 doi: 10.1016/j.ijsolstr.2018.11.002
    [32]
    Markides C F, Kourkoulis S K. The stress field in a standardized Brazilian disc: The influence of the loading type acting on the actual contact length. Rock Mech Rock Eng, 2012, 45(2): 145 doi: 10.1007/s00603-011-0201-2
    [33]
    Kourkoulis S K, Markides C F, Chatzistergos P E. The Brazilian disc under parabolically varying load: Theoretical and experimental study of the displacement field. Int J Solids Struct, 2012, 49(7-8): 959 doi: 10.1016/j.ijsolstr.2011.12.013
    [34]
    Yu J H, Shang X C. Analysis of the influence of boundary pressure and friction on determining fracture toughness of shale using cracked Brazilian disc test. Eng Fract Mech, 2019, 212: 57 doi: 10.1016/j.engfracmech.2019.03.009
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views (626) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频