<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
YU Zi-hao, ZHANG Tong-wei, ZHANG Tong-wen, LEI Rong, DENG Yong-feng. Preparation of a tuff polymer and the mechanism of alkaline solution influences on compressive strengths[J]. Chinese Journal of Engineering, 2022, 44(12): 2100-2110. doi: 10.13374/j.issn2095-9389.2021.05.28.004
Citation: YU Zi-hao, ZHANG Tong-wei, ZHANG Tong-wen, LEI Rong, DENG Yong-feng. Preparation of a tuff polymer and the mechanism of alkaline solution influences on compressive strengths[J]. Chinese Journal of Engineering, 2022, 44(12): 2100-2110. doi: 10.13374/j.issn2095-9389.2021.05.28.004

Preparation of a tuff polymer and the mechanism of alkaline solution influences on compressive strengths

doi: 10.13374/j.issn2095-9389.2021.05.28.004
More Information
  • Corresponding author: E-mail: ztw@lzu.edu.cn
  • Received Date: 2021-05-28
    Available Online: 2021-10-15
  • Publish Date: 2022-12-01
  • To promote the effective utilization of the tuff powder waste, this paper proposes a preparation method for a tuff polymer. The raw material is the by-product in the machine-made tuff-based aggregate production process. NaOH and Na2SiO3 were added to the raw material successively and cured in an airtight condition at 60 ℃. Compared to the production of Portland cement, higher temperature excitation was not necessary, and lower carbon dioxide emissions during the chemical reaction were achieved. Based on the compressive strength, pH value, scanning electron microscopy, X-ray energy dispersive spectrometer, X-ray diffraction spectrogram, and Fourier transform infrared spectroscopy tests on samples with a variety modulus (n(SiO2)/n(Na2O)) of the activator, the mechanism of the modulus of activator influences on the compressive strengths of this tuff polymer was investigated. This work highlights the following: (1) A superior mechanical performance was observed. Results revealed that the optimum modulus was 0.042–0.055 at a range of 0.034–0.150, and the corresponding maximum strength of the tuff powder was 71.33 MPa. (2) The comprehensive microscopic characterization proved the mechanism of strength development. Microscopic characterization results revealed that the alkali activator mainly acted with the surface of tuff powder particles. With the decrease of the modulus of the activator, the dissolution extent of particles increased, and more aluminosilicate was produced, resulting in strength development. When the modulus was below the optimum value, defects such as pore diameter increased, and the contacting area of the polymer on the surface of the tuff particles decreased, resulting in strength deterioration. When the modulus of the activator was 0.150 and 0.080, the strength development occurred between three and seven days. When the modulus of the activator was 0.050, 0.042, and 0.034, the strength development mainly occurred between 7 and 14 days. The pH value variety of the leaching solution generally corresponded to strength development. The increased strengths are attributed to the consumption of OH? in the polymerization and polycondensation stages. Meanwhile, a pH value that is too high may result in depolymerization of the production in the polymerization and polycondensation stages. In addition, the electrostatic repulsion increased, and therefore the strengths of the tuff polymer decreased.

     

  • loading
  • [1]
    He H, Wang Y L, Wang J J. Compactness and hardened properties of machine-made sand mortar with aggregate micro fines. Constr Build Mater, 2020, 250: 118828 doi: 10.1016/j.conbuildmat.2020.118828
    [2]
    木士春. 凝灰巖的物理化學性質及其開發利用. 中國礦業, 2000, 9(3):17 doi: 10.3969/j.issn.1004-4051.2000.03.005

    Mu S C. Physical and chemical features of tuff and its development and application. China Min Mag, 2000, 9(3): 17 doi: 10.3969/j.issn.1004-4051.2000.03.005
    [3]
    木士春. 凝灰巖開發利用初步研究. 非金屬礦, 2000, 23(2):18

    Mu S C. Preliminary study on development and utilization of tuff. Non Met Mines, 2000, 23(2): 18
    [4]
    Chong L L, Shi C J, Yang J M, et al. Effect of limestone powder on the water stability of magnesium phosphate cement-based materials. Constr Build Mater, 2017, 148: 590 doi: 10.1016/j.conbuildmat.2017.04.207
    [5]
    Turk K, Demirhan S. Effect of limestone powder on the rheological, mechanical and durability properties of ECC. Eur J Environ Civ Eng, 2017, 21(9): 1151 doi: 10.1080/19648189.2016.1150902
    [6]
    Shi C J, Day R L. Comparison of different methods for enhancing reactivity of pozzolans. Cem Concr Res, 2001, 31(5): 813 doi: 10.1016/S0008-8846(01)00481-1
    [7]
    張云升, 孫偉, 李宗津. 地聚合物膠凝材料的組成設計和結構特征. 硅酸鹽學報, 2008, 36(增刊1): 153

    Zhang Y S, Sun W, Li Z J. Composition design and microstructural characterization of geopolymeric binder. J Chin Ceram Soc, 2008, 36(Suppl 1): 153
    [8]
    Oh J E, Monteiro P J M, Jun S S, et al. The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers. Cem Concr Res, 2010, 40(2): 189 doi: 10.1016/j.cemconres.2009.10.010
    [9]
    Bondar D, Lynsdale C J, Milestone N B, et al. Effect of type, form, and dosage of activators on strength of alkali-activated natural pozzolans. Cem Concr Compos, 2011, 33(2): 251 doi: 10.1016/j.cemconcomp.2010.10.021
    [10]
    施惠生, 夏明, 郭曉潞. 粉煤灰基地聚合物反應機理及各組分作用的研究進展. 硅酸鹽學報, 2013, 41(7):972 doi: 10.7521/j.issn.0454-5648.2013.07.15

    Shi H S, Xia M, Guo X L. Research development on mechanism of fly ash-based geopolymer and effect of each component. J Chin Ceram Soc, 2013, 41(7): 972 doi: 10.7521/j.issn.0454-5648.2013.07.15
    [11]
    Cheng H, Lin K L, Cui R, et al. The effects of SiO2/Na2O molar ratio on the characteristics of alkali-activated waste catalyst-metakaolin based geopolymers. Constr Build Mater, 2015, 95: 710 doi: 10.1016/j.conbuildmat.2015.07.028
    [12]
    Aziz I H, Abdullah M M A B, Salleh M A A M, et al. Microstructure and porosity evolution of alkali activated slag at various heating temperatures. J Mater Res Technol, 2020, 9(6): 15894 doi: 10.1016/j.jmrt.2020.11.041
    [13]
    Gijbels K, Pontikes Y, Samyn P, et al. Effect of NaOH content on hydration, mineralogy, porosity and strength in alkali/sulfate-activated binders from ground granulated blast furnace slag and phosphogypsum. Cem Concr Res, 2020, 132: 106054 doi: 10.1016/j.cemconres.2020.106054
    [14]
    Nikolov A, Nugteren H, Rostovsky I. Optimization of geopolymers based on natural zeolite clinoptilolite by calcination and use of aluminate activators. Constr Build Mater, 2020, 243: 118257 doi: 10.1016/j.conbuildmat.2020.118257
    [15]
    郭曉潞, 楊君奕, 熊歸硯. 硅酸鎂鋁及靜置時間對地聚合物流變性能影響. 建筑材料學報,http://kns.cnki.net/kcms/detail/31.1764.TU.20201130.0946.002.html

    Guo X L, Yang J Y, Xiong G Y. Effect of magnesium aluminum silicate and rest time on the rheological properties of geopolymer. J Build Mater,http://kns.cnki.net/kcms/detail/31.1764.TU.20201130.0946.002.html
    [16]
    李爽, 劉和鑫, 楊永, 等. 堿激發礦渣/偏高嶺土復合膠凝材料干燥收縮機理研究. 材料導報, 2021, 35(4):4088 doi: 10.11896/cldb.19070067

    Li S, Liu H X, Yang Y, et al. Mechanisms of drying shrinkage for alkali-activated slag/metakaolin composite materials. Mater Rep, 2021, 35(4): 4088 doi: 10.11896/cldb.19070067
    [17]
    American Society for Testing and Materials, USA. ASTM C109 Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). Philadelphia: ASTM International, 2016
    [18]
    Belie N D, Kratky J, Vlierberghe S V. Influence of pozzolans and slag on the microstructure of partially carbonated cement paste by means of water vapour and nitrogen sorption experiments and BET calculations. Cem Concr Res, 2010, 40(12): 1723 doi: 10.1016/j.cemconres.2010.08.014
    [19]
    約瑟夫∙戴維德維斯, 王克儉. 地聚合物化學及應用. 北京: 國防工業出版社, 2011

    Davidovits J, Wang K J. Geopolymer Chemistry & Applications. Beijing: National Defense Industry Press, 2011
    [20]
    Shi C J. An overview on the activation of reactivity of natural pozzolans. Can J Civ Eng, 2001, 28(5): 778 doi: 10.1139/l01-041
    [21]
    黃政宇, 區楊蔭, 李操旺. 蒸壓養護下摻石英粉地聚合物的力學性能及微觀結構. 硅酸鹽通報, 2015, 34(10):2925

    Huang Z Y, Ou Y Y, Li C W. Mechanical property and microstructure of geopolymers with quartz powder by autoclaving curing. Bull Chin Ceram Soc, 2015, 34(10): 2925
    [22]
    覃麗芳, 曲波, 史才軍, 等. 鈣硅比對鋁硅酸鹽凝膠形成與特性的影響. 材料導報, 2020, 34(12):12057 doi: 10.11896/cldb.19070122

    Qin L F, Qu B, Shi C J, et al. Effect of Ca/Si ratio on the formation and characteristics of synthetic aluminosilicate hydrate gels. Mater Rep, 2020, 34(12): 12057 doi: 10.11896/cldb.19070122
    [23]
    Firdous R, Stephan D, Djobo J N Y. Natural pozzolan based geopolymers: A review on mechanical, microstructural and durability characteristics. Constr Build Mater, 2018, 190: 1251 doi: 10.1016/j.conbuildmat.2018.09.191
    [24]
    Lynch J L V, Baykara H, Cornejo M, et al. Preparation, characterization, and determination of mechanical and thermal stability of natural zeolite-based foamed geopolymers. Constr Build Mater, 2018, 172: 448 doi: 10.1016/j.conbuildmat.2018.03.253
    [25]
    Zhang M, Deskins N A, Zhang G P, et al. Modeling the polymerization process for geopolymer synthesis through reactive molecular dynamics simulations. J Phys Chem C, 2018, 122(12): 6760 doi: 10.1021/acs.jpcc.8b00697
    [26]
    李宇, 劉月明. 我國冶金固廢大宗利用技術的研究進展及趨勢. 工程科學學報, 2021, 43(12):1713

    Li Y, Liu Y M. Progress and trend of bulk utilization technology of metallurgical solid wastes in China. Chin J Eng, 2021, 43(12): 1713
    [27]
    姜關照, 吳愛祥, 王貽明. 堿激發水泥?磷渣固化性能及與含硫尾砂的相容性. 工程科學學報, 2020, 42(8):963

    Jiang G Z, Wu A X, Wang Y M. Curing performance of alkali-activated cement–phosphorous slag and its compatibility with sulfur tailings. Chin J Eng, 2020, 42(8): 963
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article views (476) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频