Citation: | DONG Yu-long, LI Zong-bao, WANG Ao, HUA Shi-yang. Oxygen reduction performance of F-doped La1?xSrxCo1?yFeyO3?δ solid oxide fuel cells cathode[J]. Chinese Journal of Engineering, 2022, 44(6): 1014-1019. doi: 10.13374/j.issn2095-9389.2021.05.21.005 |
[1] |
Jiang S P. Advances and challenges of intermediate temperature solid oxide fuel cells: A concise review. J Electrochem, 2012, 18(6): 479
|
[2] |
劉遠峰, 張秀玲, 李從舉. 微生物燃料電池碳基陽極材料的研究進展. 工程科學學報, 2020, 42(3):270
Liu Y F, Zhang X L, Li C J. Advances in carbon-based anode materials for microbial fuel cells. Chin J Eng, 2020, 42(3): 270
|
[3] |
劉少名, 鄧占鋒, 徐桂芝, 等. 歐洲固體氧化物燃料電池(SOFC)產業化現狀. 工程科學學報, 2020, 42(3):278
Liu S M, Deng Z F, Xu G Z, et al. Commercialization and future development of the solid oxide fuel cell (SOFC) in Europe. Chin J Eng, 2020, 42(3): 278
|
[4] |
Jiang Z Y, Xia C R, Chen F L. Nano-structured composite cathodes for intermediate-temperature solid oxide fuel cells via an infiltration/impregnation technique. Electrochimica Acta, 2010, 55(11): 3595 doi: 10.1016/j.electacta.2010.02.019
|
[5] |
Zhang Y, Knibbe R, Sunarso J, et al. Recent progress on advanced materials for solid-oxide fuel cells operating below 500 ℃. Adv Mater, 2017, 29(48): 1700132 doi: 10.1002/adma.201700132
|
[6] |
Zhang Y X, Ma J B, Li M, et al. Plasma glow discharge as a tool for surface modification of catalytic solid oxides: A case study of La0.6Sr0.4Co0.2Fe0.8O3–δ perovskite. Energies, 2016, 9(10): 786 doi: 10.3390/en9100786
|
[7] |
Liang F L, Chen J, Jiang S P, et al. High performance solid oxide fuel cells with electrocatalytically enhanced (La, Sr)MnO3 cathodes. Electrochem Commun, 2009, 11(5): 1048 doi: 10.1016/j.elecom.2009.03.009
|
[8] |
Shao Z P, Haile S M. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature, 2004, 431(7005): 170 doi: 10.1038/nature02863
|
[9] |
Jia L C, Li K, Yan D, et al. Oxygen adsorption properties on a palladium promoted La1–xSrxMnO3 solid oxide fuel cell cathode. RSC Adv, 2015, 5(10): 7761 doi: 10.1039/C4RA08705D
|
[10] |
Kwon H, Park J, Kim B K, et al. Effect of B-cation doping on oxygen vacancy formation and migration in LaBO3: A density functional theory study. J Korean Ceram Soc, 2015, 52(5): 331 doi: 10.4191/kcers.2015.52.5.331
|
[11] |
Zhang M, Yang M, Hou Z F, et al. A bi-layered composite cathode of La0Sr0.2MnO3-YSZ and La0.8Sr0.2MnO3?La0.4Ce0.6O1.8 for IT-SOFCs. Electrochimica Acta, 2008, 53(15): 4998 doi: 10.1016/j.electacta.2008.01.095
|
[12] |
Ji Y, Kilner J A, Carolan M F. Electrical properties and oxygen diffusion in yttria-stabilised zirconia (YSZ)-La0.8Sr0.2MnO3±δ (LSM) composites. Solid State Ion, 2005, 176(9-10): 937 doi: 10.1016/j.ssi.2004.11.019
|
[13] |
Zhao H, Huo L H, Gao S. Electrochemical properties of LSM-CBO composite cathode. J Power Sources, 2004, 125(2): 149 doi: 10.1016/j.jpowsour.2003.07.009
|
[14] |
Qiu P, Wang A, Li J, et al. Promoted CO2-poisoning resistance of La0.8Sr0.2MnO3−δ-coated Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathode for intermediate temperature solid oxide fuel cells. J Power Sources, 2016, 327: 408
|
[15] |
Vohs J M, Gorte R J. High-performance SOFC cathodes prepared by infiltration. Adv Mater, 2009, 21(9): 943 doi: 10.1002/adma.200802428
|
[16] |
Cui X Y, Ringer S P. On the nexus between atom probe microscopy and density functional theory simulations. Mater Charact, 2018, 146: 347 doi: 10.1016/j.matchar.2018.05.015
|
[17] |
Yasuda I, Hishinuma M. Electrical conductivity and chemical diffusion coefficient of strontium-doped lanthanum manganites. J Solid State Chem, 1996, 123(2): 382 doi: 10.1006/jssc.1996.0193
|
[18] |
Zhang Z B, Zhu Y L, Zhong Y J, et al. Anion doping: A new strategy for developing high-performance perovskite-type cathode materials of solid oxide fuel cells. Adv Energy Mater, 2017, 7(17): 1700242 doi: 10.1002/aenm.201700242
|
[19] |
Xie Y, Shi N, Huan D M, et al. A stable and efficient cathode for fluorine-containing proton-conducting solid oxide fuel cells. ChemSusChem, 2018, 11(19): 3423 doi: 10.1002/cssc.201801193
|
[20] |
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter, 1996, 54(16): 11169 doi: 10.1103/PhysRevB.54.11169
|
[21] |
Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B Condens Matter, 1994, 49(20): 14251 doi: 10.1103/PhysRevB.49.14251
|
[22] |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77(18): 3865 doi: 10.1103/PhysRevLett.77.3865
|
[23] |
Wang Y, Cheng H P. Oxygen reduction activity on perovskite oxide surfaces: A comparative first-principles study of LaMnO3, LaFeO3, and LaCrO3. J Phys Chem C, 2013, 117(5): 2106 doi: 10.1021/jp309203k
|
[24] |
Ritzmann A M, Dieterich J M, Carter E A. Density functional theory + U analysis of the electronic structure and defect chemistry of LSCF (La05Sr0.5Co0.25Fe0.75O3–δ). Phys Chem Chem Phys, 2016, 18(17): 12260 doi: 10.1039/C6CP01720G
|
[25] |
Cao Y P, Gadre M J, Ngo A T, et al. Factors controlling surface oxygen exchange in oxides. Nat Commun, 2019, 10(1): 1346 doi: 10.1038/s41467-019-08674-4
|
[26] |
Kotomin E A, Evarestov R A, Mastrikov Y A, et al. DFT plane wave calculations of the atomic and electronic structure of LaMnO3(001) surface. Phys Chem Chem Phys, 2005, 7(11): 2346 doi: 10.1039/b503272e
|
[27] |
Kobko N, Dannenberg J J. Effect of basis set superposition error (BSSE) upon ab initio calculations of organic transition states. J Phys Chem A, 2001, 105(10): 1944 doi: 10.1021/jp001970b
|