Citation: | LIU Nan, CHENG Gong, REN Ying, ZHANG Li-feng. Effect of calcium in ferrosilicon alloys on inclusions in Al-killed steel[J]. Chinese Journal of Engineering, 2022, 44(12): 2069-2080. doi: 10.13374/j.issn2095-9389.2021.05.12.004 |
[1] |
張立峰. 鋼中非金屬夾雜物. 北京: 冶金工業出版社, 2019
Zhang L F. Non-metallic Inclusions in Steel: Fundamentals. Beijing: Metallurgical Industry Press, 2019
|
[2] |
張立峰. 鋼中非金屬夾雜物: 工業實踐. 北京: 冶金工業出版社, 2019
Zhang L F. Nonmetallic Inclusions in Steels: Industrial Practice. Beijing: Metallurgical Industry Press, 2019
|
[3] |
李明, 王新成, 段加恒, 等. 軸承鋼中D類夾雜物的形成與控制. 工程科學學報, 2018, 40(增刊1): 31
Li M, Wang X C, Duan J H, et al. Formation and controlling of Type-D inclusions in bearing steel. Chin J Eng, 2018, 40(Suppl 1): 31
|
[4] |
杉本晉一郎, 大井茂博. 超高清浄度軸受鋼の高生産性プロセスの開発. 山陽特殊製鋼技報, 2018, 25(1):50
Sugimoto S, Oi S. Development of high productivity process of ultra-high-cleanliness bearing steel. Sanyo Technical Report, 2018, 25(1): 50
|
[5] |
龍鵠, 成國光, 丘文生, 等. 軸承鋼中大尺寸夾雜物的特征、來源及改進工藝. 中國冶金, 2020, 30(9):53 doi: 10.13228/j.boyuan.issn1006-9356.20200329
Long H, Cheng G G, Qiu W S, et al. Characteristics, sources analysis of large size inclusions and technical improvement during bearing steel production. China Metall, 2020, 30(9): 53 doi: 10.13228/j.boyuan.issn1006-9356.20200329
|
[6] |
Yang C Y, Luan Y K, Li D Z, et al. Very high cycle fatigue behavior of bearing steel with rare earth addition. Int J Fatigue, 2020, 131: 105263 doi: 10.1016/j.ijfatigue.2019.105263
|
[7] |
Yang C Y, Liu P, Luan Y K, et al. Study on transverse-longitudinal fatigue properties and their effective-inclusion-size mechanism of hot rolled bearing steel with rare earth addition. Int J Fatigue, 2019, 128: 105193 doi: 10.1016/j.ijfatigue.2019.105193
|
[8] |
Gu C, Bao Y P, Gan P, et al. An experimental study on the impact of deoxidation methods on the fatigue properties of bearing steels. Steel Res Int, 2018, 89(9): 1800129 doi: 10.1002/srin.201800129
|
[9] |
川上潔. 高清浄度鋼における介在物の生成起源. 山陽特殊製鋼技報, 2007, 14(1):22
Kawakami K. Generation mechanisms of non-metallic inclusions in high-cleanliness steel. Sanyo Technical Report, 2007, 14(1): 22
|
[10] |
太田裕己, 木村世意, 三村毅, 等. 超清浄軸受鋼の取鍋精錬時におけるCaO含有介在物の挙動. 神戸製鋼技報, 2011, 61(1):98
Ohta H, Kimura S, Mimura T, et al. Behavior of CaO containing inclusions during ladle refining of ultraclean bearing steel. Kobe Steel Eng Rep, 2011, 61(1): 98
|
[11] |
Chi Y G, Deng Z Y, Zhu M Y. Effect of ladle usage on cleanliness of bearing steel. Metall Mater Trans B, 2018, 49(1): 440 doi: 10.1007/s11663-017-1150-2
|
[12] |
Ma W J, Bao Y P, Wang M, et al. Effect of Mg and Ca treatment on behavior and particle size of inclusions in bearing steels. ISIJ Int, 2014, 54(3): 536 doi: 10.2355/isijinternational.54.536
|
[13] |
朱守欣, 于湛, 殷皓, 等. 軸承鋼水口結瘤與棒材中大型夾雜物關系研究. 煉鋼, 2017, 33(1):73
Zhu S X, Yu Z, Yin H, et al. Investigation on relationship between nozzle clogging and large inclusions in bearing steel bars. Steelmaking, 2017, 33(1): 73
|
[14] |
Riyahimalayeri K, ?lund P, Selleby M. Effect of vacuum degassing on non-metallic inclusions in an ASEA-SKF ladle furnace. Ironmak Steelmak, 2013, 40(6): 470 doi: 10.1179/174328113X13711140547880
|
[15] |
龔偉, 姜周華, 戰東平, 等. 軸承鋼中鎂的行為熱力學分析. 過程工程學報, 2009, 9(增刊1): 117
Gong W, Jiang Z H, Zhan D P, et al. Thermodynamic analysis of magnesium behavior in bearing steel. Chin J Process Eng, 2009, 9(Suppl 1): 117
|
[16] |
陳向陽, 姜周華, 朱苗勇, 等. 鎂對GCr15軸承鋼中氧化鋁夾雜的變質行為. 特殊鋼, 2009, 30(4):11 doi: 10.3969/j.issn.1003-8620.2009.04.004
Chen X Y, Jiang Z H, Zhu M Y, et al. Modification behavior of magnesium on alumina inclusion in bearing steel GCr15. Special Steel, 2009, 30(4): 11 doi: 10.3969/j.issn.1003-8620.2009.04.004
|
[17] |
王博, 姜周華, 姜茂發. 鎂鋁合金處理GCr15軸承鋼夾雜物的變質. 中國有色金屬學報, 2006, 16(10):1736 doi: 10.3321/j.issn:1004-0609.2006.10.014
Wang B, Jiang Z H, Jiang M F. Inclusion modification in GCr15 bearing steel with Al-Mg alloy treatment. Chin J Nonferrous Met, 2006, 16(10): 1736 doi: 10.3321/j.issn:1004-0609.2006.10.014
|
[18] |
楊超云, 莊權, 劉航, 等. 稀土變質高潔凈軸承鋼中夾雜物的行為分析. 中國冶金, 2020, 30(9):45
Yang C Y, Zhuang Q, Liu H, et al. Analysis on modification behavior of rare earth to inclusions in highly clean bearing steel. China Metall, 2020, 30(9): 45
|
[19] |
董大西, 楊超云, 胡云生, 等. 高潔凈軸承鋼中稀土變質夾雜物行為分析. 中國冶金, 2020, 30(6):30
Dong D X, Yang C Y, Hu Y S, et al. Analysis on modification behavior of rare earth to inclusions in high clean bearing steel. China Metall, 2020, 30(6): 30
|
[20] |
楊超云, 欒義坤, 李殿中, 等. 稀土元素對高潔凈度軸承鋼中夾雜物的影響研究. 煉鋼, 2016, 32(4):54
Yang C Y, Luan Y K, Li D Z, et al. Effect of RE on inclusions in highly clean bearing steel. Steelmaking, 2016, 32(4): 54
|
[21] |
李敬想, 唐萍, 潘銀虎, 等. 精煉渣成分與軸承鋼夾雜物類型關系熱力學分析. 工程科學學報, 2016, 38(增刊1): 195
Li J X, Tang P, Pan Y H, et al. Thermodynamic analysis of the relationship between refining slag composition and inclusion type in bearing steel. Chin J Eng, 2016, 38(Suppl 1): 195
|
[22] |
阮小江, 姜周華, 龔偉, 等. 精煉渣對軸承鋼中氧含量和夾雜物的影響. 特殊鋼, 2008, 29(5):1 doi: 10.3969/j.issn.1003-8620.2008.05.001
Ruan X J, Jiang Z H, Gong W, et al. Influence of refining slag on oxygen content and inclusions in bearing steel. Special Steel, 2008, 29(5): 1 doi: 10.3969/j.issn.1003-8620.2008.05.001
|
[23] |
Cheng G, Zhang L F, Ren Y. Characterization and evolution of non-metallic inclusions in GCr15 bearing steels during cooling and solidification. Ironmak Steelmak, 2020, 47(10): 1217 doi: 10.1080/03019233.2020.1719315
|
[24] |
Zhang Y X, Zhang L F, Chu Y P, et al. Transformation of inclusions in a complicated-deoxidized heavy rail steels during heating. Steel Res Int, 2020, 91(9): 2000120 doi: 10.1002/srin.202000120
|
[25] |
Wang Y, Yang W, Zhang L F. Effect of cooling rate on oxide inclusions during solidification of 304 stainless steel. Steel Res Int, 2019, 90(7): 1900027 doi: 10.1002/srin.201900027
|
[26] |
陳為本, 任英, 徐海坤, 等. 熱處理過程固態不銹鋼中夾雜物的轉變. 鋼鐵, 2018, 53(10):38
Chen W B, Ren Y, Xu H K, et al. Evolution of inclusions in solid stainless steels during heat treatment process. Iron Steel, 2018, 53(10): 38
|
[27] |
Yang W, Guo C B, Li C, et al. Transformation of inclusions in pipeline steels during solidification and cooling. Metall Mater Trans B, 2017, 48(5): 2267 doi: 10.1007/s11663-017-1012-y
|
[28] |
Ren Y, Zhang L F, Pistorius P C. Transformation of oxide inclusions in type 304 stainless steels during heat treatment. Metall Mater Trans B, 2017, 48(5): 2281 doi: 10.1007/s11663-017-1007-8
|
[29] |
Taniguchi S, Kikuchi A. Mechanisms of collision and coagulation between fine particles in fluid. Tetsu-to-Hagane, 1992, 78(4): 527 doi: 10.2355/tetsutohagane1955.78.4_527
|
[30] |
Saffman P G, Turner J S. On the collision of drops in turbulent clouds. J Fluid Mech, 1956, 1(1): 16 doi: 10.1017/S0022112056000020
|
[31] |
Frenkel J. Kinetic Theory of Liquids, Chapter VI. New York: Dover Publications, 1955
|
[32] |
Cramb A W, Jimbo I. Calculation of the interfacial properties of liquid steel - slag systems. Steel Res, 1989, 60(3-4): 157 doi: 10.1002/srin.198900893
|
[33] |
Bretonnet J, Lucas L, Olette M. Experimental determination of the interfacial tensions between Fe-C alloys and molten slags. C R Hebd Seances Acad Sci, 1977, 285(2): 45
|
[34] |
程禮梅, 張立峰, 沈平. 鋼鐵冶金過程中的界面現象. 工程科學學報, 2018, 40(10):1139
Cheng L M, Zhang L F, Shen P. Interfacial phenomena in ironmaking and steelmaking. Chin J Eng, 2018, 40(10): 1139
|
[35] |
程禮梅, 張立峰, 沈平. 鋼鐵冶金過程中的界面潤濕性的基礎. 工程科學學報, 2018, 40(12):1434
Cheng L M, Zhang L F, Shen P. Fundamentals of interfacial wettability in ironmaking and steelmaking. Chin J Eng, 2018, 40(12): 1434
|
[36] |
Nogi K, Ogino K. Role of interfacial phenomena in deoxidation process of molten iron. Can Metall Q, 1983, 22(1): 19 doi: 10.1179/cmq.1983.22.1.19
|
[37] |
Bretonnet J, Lucas L, Olette M. Experimental method for the study of the interfacial properties between liquid metals and liquid slags. C R Hebd Seances Acad Sci, 1975, 280(19): 1169
|
[38] |
Tian Q R, Wang G C, Shang D L, et al. In situ observation of the precipitation, aggregation, and dissolution behaviors of TiN inclusion on the surface of liquid GCr15 bearing steel. Metall Mater Trans B, 2018, 49(6): 3137 doi: 10.1007/s11663-018-1411-8
|
[39] |
Nakajima K, Mu W Z, J?nsson P G. Assessment of a simplified correlation between wettability measurement and dispersion/coagulation potency of oxide particles in ferrous alloy melt. Metall Mater Trans B, 2019, 50(5): 2229 doi: 10.1007/s11663-019-01624-x
|
[40] |
Mu W Z, J?nsson P G, Nakajima K. Prediction of intragranular ferrite nucleation from TiO, TiN, and VN inclusions. J Mater Sci, 2016, 51(4): 2168 doi: 10.1007/s10853-015-9527-6
|
[41] |
Choi J Y, Lee H G. Thermodynamic evaluation of the surface tension of molten CaO?SiO2?Al2O3 ternary slag. ISIJ Int, 2002, 42(3): 221 doi: 10.2355/isijinternational.42.221
|
[42] |
Shinozaki N, Echida N, Mukai K, et al. Wettability of Al2O3?MgO, ZrO2?CaO, Al2O3?CaO substrates with molten iron. Tetsu-to-Hagane, 1994, 80(10): 748 doi: 10.2355/tetsutohagane1955.80.10_748
|
[43] |
Yang G W, Wang X H, Huang F X, et al. Transient inclusion evolution during RH degassing. Steel Res Int, 2014, 85(1): 26 doi: 10.1002/srin.201300030
|
[44] |
沈平. 冶金過程鋼液‒渣‒耐火材料間界面現象研究[學位論文]. 北京: 北京科技大學, 2017
Shen P. Study on Interfacial Phenomenon among Steel‒Slag‒Lining Refractory System [Dissertation]. Beijing: University of Science and Technology Beijing, 2017
|
[45] |
孫麗媛. 非金屬夾雜物在鋼渣界面的去除行為研究[學位論文]. 北京: 北京科技大學, 2013
Sun L Y. Removal Behavior of Non-metallic Inclusions at the Interface of Slag and Steel [Dissertation]. Beijing: University of Science and Technology Beijing, 2013
|