<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
CHEN Zhao-jun, MENG Fan-kai, XU Chen-xin. Performance analysis and optimization of two-stage heat pipe-cooled thermoelectric chiller[J]. Chinese Journal of Engineering, 2022, 44(12): 2177-2188. doi: 10.13374/j.issn2095-9389.2021.05.09.005
Citation: CHEN Zhao-jun, MENG Fan-kai, XU Chen-xin. Performance analysis and optimization of two-stage heat pipe-cooled thermoelectric chiller[J]. Chinese Journal of Engineering, 2022, 44(12): 2177-2188. doi: 10.13374/j.issn2095-9389.2021.05.09.005

Performance analysis and optimization of two-stage heat pipe-cooled thermoelectric chiller

doi: 10.13374/j.issn2095-9389.2021.05.09.005
More Information
  • Corresponding author: E-mail: mfk927@qq.com
  • Received Date: 2021-05-09
    Available Online: 2021-10-19
  • Publish Date: 2022-12-01
  • When compared with the traditional refrigeration method that uses a refrigerant as a working medium, thermoelectric refrigeration is a new type of solid-state active environmental protection refrigeration method. This method is based on the Peltier effect of semiconductor thermoelectric materials, which directly converts electrical energy into a temperature gradient. Thermoelectric refrigeration has the advantages of simple structure, compact structure, rapid cooling, and accurate control of refrigeration temperature. When compared with a single-stage thermoelectric cooler, a two-stage thermoelectric cooler can ensure greater cooling temperature difference and efficiency. A heat pipe is a heat transfer component that uses liquid-phase transition to transfer heat. It has good isothermal stability, efficient thermal conductivity, and small size. For good heat dissipation capacity of heat pipes and higher cooling temperature difference in two-stage thermoelectric coolers, a two-stage thermoelectric chiller model based on heat pipe heat dissipation is proposed. Based on finite-time and nonequilibrium thermodynamics, various thermoelectric effects, including the Thomson effect, are considered. The effects of working current, distribution ratio of thermoelectric elements, and heat pipe geometric parameters (heat pipe outer diameter, evaporating section length, and wick thickness) on the device-cooling load, coefficient of performance (COP), and extreme cooling temperature difference are analyzed by the numerical simulation method. Under a certain total logarithm constraint of the thermoelectric unit, the cooling load and the COP are taken as the targets. The working current and distribution ratio of thermoelectric elements are used as the variables to optimize device performance. The influence of key parameters on the optimal variables and optimal performance is analyzed, and the optimal interval of the coordinated cooling load and COP is obtained. By optimizing the distribution ratio and current of thermoelectric elements, the cooling load and COP of the device significantly improved. When ${\Delta }{T}\text{}\text{=}\text{}\text{20?K}$, x = 0.6, I = 2.5 A, the optimized cooling load and COP reach 23.42 W and 1.53, respectively, which are 12.11% and 218.75% higher than those before optimization.

     

  • loading
  • [1]
    Riffat S B, Ma X L. Thermoelectrics: a review of present and potential applications. Appl Therm Eng, 2003, 23(8): 913 doi: 10.1016/S1359-4311(03)00012-7
    [2]
    陳林根, 孟凡凱, 戈延林, 等. 半導體熱電裝置的熱力學研究進展. 機械工程學報, 2013, 49(24):144 doi: 10.3901/JME.2013.24.144

    Chen L G, Meng F K, Ge Y L, et al. Progress in thermodynamic studies for semiconductor thermoelectric devices. J Mech Eng, 2013, 49(24): 144 doi: 10.3901/JME.2013.24.144
    [3]
    于子淼, 武衛東, 姜博仁, 等. 基于半導體制冷預冷的氮氣冷凍刀系統實驗研究. 低溫工程, 2014(1):50 doi: 10.3969/j.issn.1000-6516.2014.01.009

    Yu Z M, Wu W D, Jiang B R, et al. Experimental study of nitrogen cryoprobe system based on semiconductor refrigeration pre-cooling. Cryogenics, 2014(1): 50 doi: 10.3969/j.issn.1000-6516.2014.01.009
    [4]
    謝萬蓉, 屈宗長, 劉公衍, 等. 半導體冰箱熱管及變工況控制的研究. 低溫與超導, 2013, 41(5):69 doi: 10.3969/j.issn.1001-7100.2013.05.017

    Xie W R, Qu Z C, Liu G Y, et al. Research on heat pipe and the variable condition control in semiconductor freezer. Cryog Supercond, 2013, 41(5): 69 doi: 10.3969/j.issn.1001-7100.2013.05.017
    [5]
    Astrain D, Martínez A, Rodríguez A. Improvement of a thermoelectric and vapour compression hybrid refrigerator. Appl Therm Eng, 2012, 39: 140 doi: 10.1016/j.applthermaleng.2012.01.054
    [6]
    Miranda á G, Chen T S, Hong C W. Feasibility study of a green energy powered thermoelectric chip based air conditioner for electric vehicles. Energy, 2013, 59: 633 doi: 10.1016/j.energy.2013.07.013
    [7]
    Shen L M, Xiao F, Chen H X, et al. Investigation of a novel thermoelectric radiant air-conditioning system. Energy Build, 2013, 59: 123 doi: 10.1016/j.enbuild.2012.12.041
    [8]
    Shen L M, Tu Z L, Hu Q, et al. The optimization design and parametric study of thermoelectric radiant cooling and heating panel. Appl Therm Eng, 2017, 112: 688 doi: 10.1016/j.applthermaleng.2016.10.094
    [9]
    Liu D, Zhao F Y, Yang H X, et al. Thermoelectric mini cooler coupled with micro thermosiphon for CPU cooling system. Energy, 2015, 83: 29 doi: 10.1016/j.energy.2015.01.098
    [10]
    扶新, 高潮, 賀俊杰, 等. 基于半導體制冷器的CPU散熱研究. 低溫與超導, 2009, 37(3):48 doi: 10.3969/j.issn.1001-7100.2009.03.014

    Fu X, Gao C, He J J, et al. The research on CPU heat elimination based on semiconductor cooler. Cryog Supercond, 2009, 37(3): 48 doi: 10.3969/j.issn.1001-7100.2009.03.014
    [11]
    Li C C, Jiang F X, Liu C C, et al. Present and future thermoelectric materials toward wearable energy harvesting. Appl Mater Today, 2019, 15: 543 doi: 10.1016/j.apmt.2019.04.007
    [12]
    吳雷, 高明, 張濤, 等. 熱電制冷的應用與優化綜述. 制冷學報, 2019, 40(6):1

    Wu L, Gao M, Zhang T, et al. Thermoelectric cooling application and optimization: A review. J Refrig, 2019, 40(6): 1
    [13]
    孟凡凱, 陳林根, 孫豐瑞. 熱電發電機驅動熱電制冷機聯合系統最優性能. 工程熱物理學報, 2009, 30(11):1825 doi: 10.3321/j.issn:0253-231X.2009.11.007

    Meng F K, Chen L G, Sun F R. Optimal performance of a thermoelectric generator-driven thermoelectric refrigerator system. J Eng Thermophys, 2009, 30(11): 1825 doi: 10.3321/j.issn:0253-231X.2009.11.007
    [14]
    孟凡凱, 陳林根, 戈延林, 等. 單級多單元熱電制冷機制冷率優化. 工程熱物理學報, 2012, 33(12):2025

    Meng F K, Chen L G, Ge Y L, et al. Cooling load optimization of A single-stage multi-element thermoelectric refrigerator. J Eng Thermophys, 2012, 33(12): 2025
    [15]
    Chen L G, Meng F K, Sun F R. Effect of heat transfer on the performance of thermoelectric generator-driven thermoelectric refrigerator system. Cryogenics, 2012, 52(1): 58 doi: 10.1016/j.cryogenics.2011.10.007
    [16]
    Ruiz Ortega P, Olivares-Robles M. Analysis of a hybrid thermoelectric microcooler: Thomson heat and geometric optimization. Entropy, 2017, 19(7): 312 doi: 10.3390/e19070312
    [17]
    Pourkiaei S M, Ahmadi M H, Sadeghzadeh M, et al. Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials. Energy, 2019, 186: 115849 doi: 10.1016/j.energy.2019.07.179
    [18]
    Nami H, Nemati A, Yari M, et al. A comprehensive thermodynamic and exergoeconomic comparison between single- and two-stage thermoelectric cooler and heater. Appl Therm Eng, 2017, 124: 756 doi: 10.1016/j.applthermaleng.2017.06.100
    [19]
    Xuan X C, Ng K C, Yap C, et al. The maximum temperature difference and polar characteristic of two-stage thermoelectric coolers. Cryogenics, 2002, 42(5): 273 doi: 10.1016/S0011-2275(02)00035-8
    [20]
    Cheng Y H, Shih C. Maximizing the cooling capacity and COP of two-stage thermoelectric coolers through genetic algorithm. Appl Therm Eng, 2006, 26(8-9): 937 doi: 10.1016/j.applthermaleng.2005.09.016
    [21]
    Lin S M, Yu J L. Optimization of a trapezoid-type two-stage Peltier couples for thermoelectric cooling applications. Int J Refrig, 2016, 65: 103 doi: 10.1016/j.ijrefrig.2015.12.007
    [22]
    Gao Y W, Lv H, Wang X D, et al. Enhanced Peltier cooling of two-stage thermoelectric cooler via pulse currents. Int J Heat Mass Transf, 2017, 114: 656 doi: 10.1016/j.ijheatmasstransfer.2017.06.102
    [23]
    Gao Y W, Shi C L, Wang X D. Numerical analysis for transient supercooling effect of pulse current shapes on a two-stage thermoelectric cooler. Appl Therm Eng, 2019, 163: 114416 doi: 10.1016/j.applthermaleng.2019.114416
    [24]
    Chen L G, Li J, Sun F R, et al. Effect of heat transfer on the performance of two-stage semiconductor thermoelectric refrigerators. J Appl Phys, 2005, 98(3): 034507 doi: 10.1063/1.2001156
    [25]
    Lv H, Wang X D, Meng J H, et al. Enhancement of maximum temperature drop across thermoelectric cooler through two-stage design and transient supercooling effect. Appl Energy, 2016, 175: 285 doi: 10.1016/j.apenergy.2016.05.035
    [26]
    Sun H N, Gil S U, Liu W, et al. Structure optimization and exergy analysis of a two-stage TEC with two different connections. Energy, 2019, 180: 175 doi: 10.1016/j.energy.2019.05.077
    [27]
    Chen L G, Meng F K, Ge Y L, et al. Performance optimization of a class of combined thermoelectric heating devices. Sci China Technol Sci, 2020, 63(12): 2640 doi: 10.1007/s11431-019-1518-x
    [28]
    Meng F, Chen L, Sun F. Performance prediction and irreversibility analysis of a thermoelectric refrigerator with finned heat exchanger. Acta Phys Pol A, 2011, 120(3): 397 doi: 10.12693/APhysPolA.120.397
    [29]
    Chen L G, Meng F K, Xie Z H, et al. Thermodynamic modeling and analysis of an air-cooled small space thermoelectric cooler. Eur Phys J Plus, 2020, 135: 80 doi: 10.1140/epjp/s13360-019-00020-3
    [30]
    王子成, 蔡蘭蘭, 高鵬, 等. 熱電制冷強化風冷散熱模塊的工作特性分析. 制冷學報, 2020, 41(2):48 doi: 10.3969/j.issn.0253-4339.2020.02.048

    Wang Z C, Cai L L, Gao P, et al. Operating characteristics analysis of thermoelectric cooler enhanced air cooling module. J Refrig, 2020, 41(2): 48 doi: 10.3969/j.issn.0253-4339.2020.02.048
    [31]
    江帆, 孟凡凱, 陳林根, 等. 變溫熱源小型熱電冷水機結構設計與性能分析. 工程熱物理學報, 2020, 41(7):1573

    Jiang F, Meng F K, Chen L G, et al. Structural design and performance analysis of a small thermoelectric chiller with variable temperature heat reservoirs. J Eng Thermophys, 2020, 41(7): 1573
    [32]
    厲青峰, 王亞楠, 何鑫, 等. 脈動熱管的理論研究與應用新進展. 工程科學學報, 2019, 41(9):1115

    Li Q F, Wang Y N, He X, et al. New progress in the theoretical research and application of pulsating heat pipe. Chin J Eng, 2019, 41(9): 1115
    [33]
    江羽, 王倩, 王冬, 等. 高溫相變儲能微膠囊研究進展. 工程科學學報, 2021, 43(1):108

    Jiang Y, Wang Q, Wang D, et al. Research progress of high-temperature phase change energy storage microcapsules. Chin J Eng, 2021, 43(1): 108
    [34]
    Riffat S B, Omer S A, Ma X L. A novel thermoelectric refrigeration system employing heat pipes and a phase change material: An experimental investigation. Renew Energy, 2001, 23(2): 313 doi: 10.1016/S0960-1481(00)00170-1
    [35]
    Liu D, Cai Y, Zhao F Y. Optimal design of thermoelectric cooling system integrated heat pipes for electric devices. Energy, 2017, 128: 403 doi: 10.1016/j.energy.2017.03.120
    [36]
    黃雙福, 林春深, 黃金耀, 等. 半導體制冷系統熱端散熱試驗研究. 流體機械, 2021, 49(2):77 doi: 10.3969/j.issn.1005-0329.2021.02.012

    Huang S F, Lin C S, Huang J Y, et al. Experimental research on the heat dissipation of the semiconductor refrigeration system. Fluid Mach, 2021, 49(2): 77 doi: 10.3969/j.issn.1005-0329.2021.02.012
    [37]
    陳柏超, 李田月, 田翠華. 中壓IGBT模塊用熱電制冷集成微型平板熱管散熱器的研究. 武漢大學學報(工學版), 2021, 54(6):524 doi: 10.14188/j.1671-8844.2021-06-007

    Chen B C, Li T Y, Tian C H. Integrated micro flat heat pipe heat sink for thermoelectric cooler of medium voltage IGBT module. Eng J Wuhan Univ, 2021, 54(6): 524 doi: 10.14188/j.1671-8844.2021-06-007
    [38]
    Meng F K, Chen L G, Sun F R. Extreme working temperature differences for thermoelectric refrigerating and heat pumping devices driven by thermoelectric generator. J Energy Inst, 2010, 83(2): 108 doi: 10.1179/014426010X12682307291506
    [39]
    王健石. 電子散熱器技術手冊. 北京: 中國電力出版社, 2011

    Wang J S. Technical Manual of Electronic Radiator. Beijing: China Electric Power Press, 2011
    [40]
    鄔佑靖, 戴健行. 熱管傳熱模型熱阻的計算. 節能技術, 1983, 1(2):47

    Wu Y J, Dai J X. Calculation of thermal resistance of heat transfer model of heat pipe. Energy Conserv Technol, 1983, 1(2): 47
    [41]
    戴鍋生. 傳熱學. 北京: 高等教育出版社, 1991

    Dai G S. Heat Transfer. Beijing: Higher Education Press, 1991
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(24)  / Tables(1)

    Article views (362) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频