<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
YU Kai-lun, WANG Bo, HAN Qing, CHEN Jian-she, LI Bin-chuan, WEI Shi-cheng. Effects of different mass ratios of tetrabutyl titanate on the microstructure and properties of GO?TiO2 composite materials[J]. Chinese Journal of Engineering, 2022, 44(8): 1360-1367. doi: 10.13374/j.issn2095-9389.2021.03.30.004
Citation: YU Kai-lun, WANG Bo, HAN Qing, CHEN Jian-she, LI Bin-chuan, WEI Shi-cheng. Effects of different mass ratios of tetrabutyl titanate on the microstructure and properties of GO?TiO2 composite materials[J]. Chinese Journal of Engineering, 2022, 44(8): 1360-1367. doi: 10.13374/j.issn2095-9389.2021.03.30.004

Effects of different mass ratios of tetrabutyl titanate on the microstructure and properties of GO?TiO2 composite materials

doi: 10.13374/j.issn2095-9389.2021.03.30.004
More Information
  • Corresponding author: WANG Bo, E-mail: wangbobo421@163.com; WEI Shi-cheng, E-mail: wsc33333@163.com
  • Received Date: 2021-03-30
    Available Online: 2021-06-02
  • Publish Date: 2022-07-06
  • Graphene oxide/titanium dioxide (GO–TiO2) composites were prepared via a one-step hydrothermal synthesis method using graphene oxide and tetrabutyl titanate as raw materials. The effects of different mass ratios of tetrabutyl titanate on the microstructure and properties of the GO–TiO2 composites were studied. The microscopic morphology of these composites was observed through a scanning electron microscope, and the phase composition and structure were analyzed using X-ray diffraction, infrared spectroscopy, and Raman spectroscopy. The light absorption performance and thermal stability of the composites were analyzed via ultraviolet–visible spectroscopy and a thermal gravimetric analyzer. As the content of tetrabutyl titanate increases, the TiO2 generation increases; material surface area climbs up and then declines; surface defects decline and then climb up; absorption peak in the visible light range strengthens and then weakens; and degree of recombination climbs up and then weakens. When the content of tetrabutyl titanate exceeded 100 mL, the dispersibility of TiO2 in the GO–TiO2 composites became poor, thereby reducing the light absorption performance and thermal stability of the composites. When the GO was 320 mg and tetrabutyl titanate was 100 mL in the precursor solution, the obtained composite material exhibited superior surface properties, optical properties, and thermal stability. TiO2 was uniformly dispersed on the surface of the composite material. The composite material exhibited a high absorption intensity of visible light, high recombination, few surface defects, and an ID/IG ratio of 0.91. Characteristic peaks at 1573 and 1428 cm?1 were the strongest. The absorption edge of TiO2 in the composite was bathochromic shifted to the visible light range, and the absorption peak was significantly enhanced in the visible light range of 440–800 nm. The composite material exhibited good anticorrosion and antifouling abilities. The thermal stability of the composite was 84.89% higher than that of GO at 800°C. These composites have great prospects for development in the fields of anticorrosion and antifouling.

     

  • loading
  • [1]
    王彩云. 金屬腐蝕的危害及防護. 機械管理開發, 2012, 27(5):111 doi: 10.3969/j.issn.1003-773X.2012.05.057

    Wang C Y. Hazards and protection of metal corrosion. Mech Manag Dev, 2012, 27(5): 111 doi: 10.3969/j.issn.1003-773X.2012.05.057
    [2]
    Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China. Npj Mater Degrad, 2017, 1(1): 1 doi: 10.1038/s41529-017-0001-6
    [3]
    侯保榮, 張盾, 王鵬. 海洋腐蝕防護的現狀與未來. 中國科學院院刊, 2016, 31(12):1326

    Hou B R, Zhang D, Wang P. Marine corrosion and protection: Current status and prospect. Bull Chin Acad Sci, 2016, 31(12): 1326
    [4]
    王博. 鈦納米聚合物防腐功能涂層制備及防護機理研究[學位論文]. 重慶: 重慶大學, 2017

    Wang B. Preparation and Protective Mechanism of Nano-Ti Polymer Anti-Corrosion Coating [Dissertation]. Chongqing: Chongqing University, 2017
    [5]
    Yang T, Cui Y N, Li Z S, et al. Enhancement of the corrosion resistance of epoxy coating by highly stable 3, 4, 9, 10-perylene tetracarboxylic acid functionalized graphene. J Hazard Mater, 2018, 357: 475 doi: 10.1016/j.jhazmat.2018.06.038
    [6]
    Aneja K S, B?hm H L M, Khanna A S, et al. Functionalised graphene as a barrier against corrosion. FlatChem, 2017, 1: 11 doi: 10.1016/j.flatc.2016.08.003
    [7]
    張昕, 許季海, 李紅良, 等. 聚苯硫醚摻雜改性玻璃鱗片防腐涂層耐腐蝕性研究. 涂料工業, 2013, 43(7):33 doi: 10.3969/j.issn.0253-4312.2013.07.008

    Zhang X, Xu J H, Li H L, et al. Study of corrosion protection anticorrosion coating with modified glass flake and polyphenylene sulfide. Paint Coat Ind, 2013, 43(7): 33 doi: 10.3969/j.issn.0253-4312.2013.07.008
    [8]
    陳偉軍, 單景剛, 王維, 等. 乙烯酯玻璃鱗片涂層的涂裝技術及質量控制. 腐蝕與防護, 2017, 38(2):147 doi: 10.11973/fsyfh-201702013

    Chen W J, Shan J G, Wang W, et al. Coating technology and quality control of glass flake reinforced vinyl ester coating. Corros Prot, 2017, 38(2): 147 doi: 10.11973/fsyfh-201702013
    [9]
    Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197 doi: 10.1038/nature04233
    [10]
    Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666 doi: 10.1126/science.1102896
    [11]
    劉盼盼, 劉斯奇, 高鴻毅, 等. 羥基磷灰石氣凝膠復合相變材料的制備及其性能. 工程科學學報, 2020, 42(1):120

    Liu P P, Liu S Q, Gao H Y, et al. Preparation and properties of hydroxyapatite aerogel composite phase change materials. Chin J Eng, 2020, 42(1): 120
    [12]
    Wang Y X, Myers M, Staser J A. Electrochemical UV sensor using carbon quantum dot/graphene semiconductor. J Electrochem Soc, 2017, 165(4): H3001
    [13]
    水麗, 張凱, 于宏. 石墨烯含量對石墨烯/Al-15Si-4Cu-Mg復合材料微觀組織和力學性能的影響. 工程科學學報, 2019, 41(9):1162

    Shui L, Zhang K, Yu H. Effect of graphene content on the microstructure and mechanical properties of graphene-reinforced Al-15Si-4Cu-Mg matrix composites. Chin J Eng, 2019, 41(9): 1162
    [14]
    Chen D, Feng H, Li J. Graphene oxide: Preparation, functionalization, and electrochemical applications. Chem Rev, 2012, 112(11): 6027 doi: 10.1021/cr300115g
    [15]
    Shumaila, Khan S, Khan Z M S H, et al. Facile synthesis of highly conducting polypyrrole and reduced graphene oxide nanocomposites for low-turn-on electron field emitters. J Phys Chem Solids, 2020, 143: 109522 doi: 10.1016/j.jpcs.2020.109522
    [16]
    Tavakol M, Montazeri A, Aboutalebi S H, et al. Mechanical properties of graphene oxide: The impact of functional groups. Appl Surf Sci, 2020, 525: 146554 doi: 10.1016/j.apsusc.2020.146554
    [17]
    Suvarna K S, Binitha N N. Graphene preparation by jaggery assisted ball-milling of graphite for the adsorption of Cr(VI). Mater Today:Proc, 2020, 25: 236 doi: 10.1016/j.matpr.2020.01.209
    [18]
    Sun Y, Chen L, Yu J M, et al. Lightweight graphene oxide-based sponges with high compressibility and durability for dye adsorption. Carbon, 2020, 160: 54 doi: 10.1016/j.carbon.2020.01.009
    [19]
    Yang N, Yang T, Wang W, et al. Polydopamine modified polyaniline-graphene oxide composite for enhancement of corrosion resistance. J Hazard Mater, 2019, 377: 142 doi: 10.1016/j.jhazmat.2019.05.063
    [20]
    Chauhan D S, Quraishi M A, Ansari K R, et al. Graphene and graphene oxide as new class of materials for corrosion control and protection: Present status and future scenario. Prog Org Coat, 2020, 147: 105741 doi: 10.1016/j.porgcoat.2020.105741
    [21]
    Chang C I, Chang K H, Shen H H, et al. A unique two-step Hummers method for fabricating low-defect graphene oxide nanoribbons through exfoliating multiwalled carbon nanotubes. J Taiwan Inst Chem Eng, 2014, 45(5): 2762 doi: 10.1016/j.jtice.2014.05.030
    [22]
    O'Regan B, Gr?tzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737 doi: 10.1038/353737a0
    [23]
    Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37 doi: 10.1038/238037a0
    [24]
    Braun J H, Baidins A, Marganski R E. TiO2 pigment technology: A review. Prog Org Coat, 1992, 20(2): 105 doi: 10.1016/0033-0655(92)80001-D
    [25]
    姚理榮, 董莉, 李小娟, 等. TiO2插層氧化石墨烯降解亞甲基藍性能研究. 上海紡織科技, 2018, 46(11):58

    Yao L R, Dong L, Li X J, et al. Photocatalytic performance of TiO2-intercalated graphene oxide toward methylene blue. Shanghai Text Sci Technol, 2018, 46(11): 58
    [26]
    Morales-Torres S, Pastrana-Martínez L M, Figueiredo J L, et al. Design of graphene-based TiO2 photocatalysts—a review. Environ Sci Pollut Res, 2012, 19(9): 3676 doi: 10.1007/s11356-012-0939-4
    [27]
    Williams G, Seger B, Kamat P V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano, 2008, 2(7): 1487
    [28]
    Zhang H, Lv X, Li Y, et al. P25-graphene composite as a high performance photocatalyst. ACS Nano, 2010, 4(1): 380 doi: 10.1021/nn901221k
    [29]
    Liang Y Y, Wang H L, Sanchez Casalongue H, et al. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res, 2010, 3(10): 701 doi: 10.1007/s12274-010-0033-5
    [30]
    Wang J H, Liu R H, Yin X L. Adsorptive removal of tetracycline on graphene oxide loaded with titanium dioxide composites and photocatalytic regeneration of the adsorbents. J Chem Eng Data, 2018, 63(2): 409 doi: 10.1021/acs.jced.7b00816
    [31]
    Eder D, Windle A H. Carbon-inorganic hybrid materials: The carbon-nanotube/TiO2 interface. Adv Mater, 2008, 20(9): 1787 doi: 10.1002/adma.200702835
    [32]
    Zhou K F, Zhu Y H, Yang X L, et al. Preparation of graphene–TiO2 composites with enhanced photocatalytic activity. New J Chem, 2011, 35(2): 353 doi: 10.1039/C0NJ00623H
    [33]
    Zhang Y P, Pan C X. TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light. J Mater Sci, 2011, 46(8): 2622 doi: 10.1007/s10853-010-5116-x
    [34]
    Zhang H J, Xu P P, Du G D, et al. A facile one-step synthesis of TiO2/graphene composites for photodegradation of methyl orange. Nano Res, 2011, 4(3): 274 doi: 10.1007/s12274-010-0079-4
    [35]
    Hu A M, Zhang X, Oakes K D, et al. Hydrothermal growth of free standing TiO2 nanowire membranes for photocatalytic degradation of pharmaceuticals. J Hazard Mater, 2011, 189(1-2): 278 doi: 10.1016/j.jhazmat.2011.02.033
    [36]
    Zhang J, Liu M, Dou Y C, et al. Role of alloying elements in the mechanical behaviors of an Mg–Zn–Zr–Er alloy. Metall And Mat Trans A, 2014, 45(12): 5499 doi: 10.1007/s11661-014-2526-4
    [37]
    譚奇. TiO2及其石墨烯基復合材料的制備與應用研究[學位論文]. 長沙: 湖南大學, 2017

    Tan Q. Study on the Preparation and Application of TiO2 and Its Graphene-Based Composite [Dissertation]. Changsha: Hunan University, 2017
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article views (738) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频