Citation: | WANG Yi-ming, WANG Zhi-kai, WU Ai-xiang, PENG Qing-song, LI Jian-qiu. Thermodynamic model of the hydration reaction of hemihydrate phosphogypsum based on the temperature effect[J]. Chinese Journal of Engineering, 2022, 44(11): 1811-1820. doi: 10.13374/j.issn2095-9389.2021.03.30.003 |
[1] |
楊林, 曹建新, 劉亞明. 半水磷石膏的礦物學特征. 巖石礦物學雜志, 2015, 34(6):827 doi: 10.3969/j.issn.1000-6524.2015.06.005
Yang L, Cao J X, Liu Y M. Mineralogical characteristics of hemi-hydrate phosphogypsum. Acta Petrol et Mineral, 2015, 34(6): 827 doi: 10.3969/j.issn.1000-6524.2015.06.005
|
[2] |
王貽明, 王志凱, 吳愛祥, 等. 新型膠凝充填材料制備及固化機理分析. 金屬礦山, 2018(6):20
Wang Y M, Wang Z K, Wu A X, et al. Preparation of new cementitious backfilling material and its curing mechanism analysis. Met Mine, 2018(6): 20
|
[3] |
蘭文濤, 吳愛祥, 王貽明, 等. 半水磷石膏充填強度影響因素試驗. 哈爾濱工業大學學報, 2019, 51(8):128 doi: 10.11918/j.issn.0367-6234.201804082
Lan W T, Wu A X, Wang Y M, et al. Experimental study on influencing factors of the filling strength of hemihydrate phosphogypsum. J Harbin Inst Technol, 2019, 51(8): 128 doi: 10.11918/j.issn.0367-6234.201804082
|
[4] |
閻培渝, 鄭峰. 水泥基材料的水化動力學模型. 硅酸鹽學報, 2006, 34(5):555 doi: 10.3321/j.issn:0454-5648.2006.05.009
Yan P Y, Zheng F. Kinetics model for the hydration mechanism of cementitious materials. J Chin Ceram Soc, 2006, 34(5): 555 doi: 10.3321/j.issn:0454-5648.2006.05.009
|
[5] |
李林香, 謝永江, 馮仲偉, 等. 水泥水化機理及其研究方法. 混凝土, 2011(6):76
Li L X, Xie Y J, Feng Z W, et al. Cement hydration mechanism and research methods. Concrete, 2011(6): 76
|
[6] |
韓方暉, 劉娟紅, 閻培渝. 溫度對水泥-礦渣復合膠凝材料水化的影響. 硅酸鹽學報, 2016, 44(8):1071
Han F H, Liu J H, Yan P Y. Effect of temperature on hydration of composite binder containing slag. J Chin Ceram Soc, 2016, 44(8): 1071
|
[7] |
呂全紅, 肖蓮珍. 基于水化動力學模型的水泥基材料溫度效應. 武漢工程大學學報, 2020, 42(4):434
Lü Q H, Xiao L Z. Temperature effect of cement-based materials based on hydration kinetics model. J Wuhan Inst Technol, 2020, 42(4): 434
|
[8] |
Ulm F J, Coussy O. Modeling of thermochemomechanical couplings of concrete at early ages. J Eng Mech, 1995, 121(7): 785 doi: 10.1061/(ASCE)0733-9399(1995)121:7(785)
|
[9] |
Suzuki M, Fukuura N, Takeda H, et al. Establishment of coupled analysis of interaction between structural deterioration and reinforcement corrosion by salt damage. J Adv Concr Technol, 2016, 14(9): 559 doi: 10.3151/jact.14.559
|
[10] |
Gawin D, Pesavento F, Schrefler B A. Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part I: Hydration and hygro-thermal phenomena. Int J Numer Meth Engng, 2006, 67(3): 299
|
[11] |
馮楚橋, 余曉敏, 常曉林, 等. 混凝土水化化學反應動力學模型的推導及應用. 中國農村水利水電, 2019(1):152 doi: 10.3969/j.issn.1007-2284.2019.01.029
Feng C Q, Yu X M, Chang X L, et al. The deduction and application of a hydration model for concrete based on chemical reaction kinetics. China Rural Water Hydropower, 2019(1): 152 doi: 10.3969/j.issn.1007-2284.2019.01.029
|
[12] |
Liu S H, Wang L, Gao Y X, et al. Influence of fineness on hydration kinetics of supersulfated cement. Thermochimica Acta, 2015, 605: 37 doi: 10.1016/j.tca.2015.02.013
|
[13] |
Neusinger R, Drach V, Ebert H P, et al. Computer simulations that illustrate the heat balance of landfills. Int J Thermophys, 2005, 26(2): 519 doi: 10.1007/s10765-005-4513-x
|
[14] |
王志凱, 王貽明, 吳愛祥, 等. 堆存溫度對半水磷石膏膠凝性能影響. 工程科學學報, 2022, 44(5):840
Wang Z K, Wang Y M, Wu A X, et al. Effect of storage temperature on the cementitious property of hemihydrate phosphogypsum. Chin J Eng, 2022, 44(5): 840
|
[15] |
Liu X H, Zhang C, Chang X L, et al. Precise simulation analysis of the thermal field in mass concrete with a pipe water cooling system. Appl Therm Eng, 2015, 78: 449 doi: 10.1016/j.applthermaleng.2014.12.050
|
[16] |
楊顯萬, 何藹平, 袁寶州. 高溫水溶液熱力學數據計算手冊. 北京: 冶金工業出版社, 1983
Yang X W, He A P, Yuan B C. Manual for the Calculation of Thermodynamic Data in High Temperature. Beijing: Metallurgical Industry Press, 1983
|
[17] |
李顯波. 高強α半水磷石膏晶形調控及水化硬化性能研究[學位論文]. 貴陽: 貴州大學, 2019
Li X B. Crystal Morphology Control and Hydration Hardening Properties of High Strength Α-Hemihydrate Phosphogypsum [Dissertation]. Guiyang: Guizhou University, 2019
|
[18] |
洪清揚. 探析影響化學反應速率的因素. 廣州化工, 2017, 45(17):201 doi: 10.3969/j.issn.1001-9677.2017.17.072
Hong Q Y. Study on influence factors of rate of chemical reaction. Guangzhou Chem Ind, 2017, 45(17): 201 doi: 10.3969/j.issn.1001-9677.2017.17.072
|
[19] |
鄭旴, 陳澤斌. 城市生活垃圾填埋處置中的溫度-化學耦合作用探討. 昆明學院學報, 2015, 37(3):77
Zheng X, Chen Z B. Exploration into temperature-chemical coupling effect in landfill disposal of household rubbish in urban area. J Kunming Univ, 2015, 37(3): 77
|
[20] |
楊軍. 城市生活垃圾填埋處置中的溫度-化學耦合作用研究[學位論文]. 成都: 西南交通大學, 2007
Yang J. A Study of Coupled Temperature and Chemical Processes in Municiple Solid Waste’s Landfill [Dissertation]. Chengdu: Southwest Jiaotong University, 2007
|
[21] |
肖衍繁, 李文斌. 物理化學. 2版. 天津: 天津大學出版社, 2004
Xiao Y F, Li W B. Physical Chemistry. 2nd Ed. Tianjin: Tianjin University Press, 2004
|
[22] |
趙學莊. 化學反應動力學原理. 北京: 高等教育出版社, 1984
Zhao X Z. Principle of Chemical Reaction Dynamics. Beijing: Higher Education Press, 1984
|
[23] |
Zhang Z X, Guo F, Song W, et al. Empirical correction of kinetic model for polymer thermal reaction process based on first order reaction kinetics. Chin J Chem Eng, 2021, 38: 132 doi: 10.1016/j.cjche.2020.09.023
|
[24] |
Reddy M G, Naveen Kumar R, Prasannakumara B C, et al. Magnetohydrodynamic flow and heat transfer of a hybrid nanofluid over a rotating disk by considering Arrhenius energy. Commun Theor Phys, 2021, 73(4): 045002 doi: 10.1088/1572-9494/abdaa5
|
[25] |
楊林. 半水磷石膏礦物學特征及膠凝性能變化行為[學位論文]. 貴陽: 貴州大學, 2016
Yang L. Evolution of Mineralogical Characteristics and Gelling Properties of Hemi-Hydrate Phosphogypsum [Dissertation]. Guiyang: Guizhou University, 2016
|
[26] |
王勇, 吳愛祥, 王洪江, 等. 初始溫度條件下全尾膠結膏體損傷本構模型. 工程科學學報, 2017, 39(1):31
Wang Y, Wu A X, Wang H J, et al. Damage constitutive model of cemented tailing paste under initial temperature effect. Chin J Eng, 2017, 39(1): 31
|