Citation: | NIU Ben, ZHANG Xiu-ling, ZHAI Zhen-yu, HAO Xiao-ke, LI Cong-ju. Application of chemiresistive sensors based on the metal-organic framework for detecting volatile organic compounds[J]. Chinese Journal of Engineering, 2022, 44(8): 1349-1359. doi: 10.13374/j.issn2095-9389.2021.03.26.003 |
[1] |
Barea E, Montoro C, Navarro J A R. Toxic gas removal – metal–organic frameworks for the capture and degradation of toxic gases and vapours. Chem Soc Rev, 2014, 43(16): 5419 doi: 10.1039/C3CS60475F
|
[2] |
Wang H, Lustig W P, Li J. Sensing and capture of toxic and hazardous gases and vapors by metal–organic frameworks. Chem Soc Rev, 2018, 47(13): 4729 doi: 10.1039/C7CS00885F
|
[3] |
朱琴, 張裕敏, 胡昌義, 等. 氧化物半導體氣敏傳感器的改性研究進展. 功能材料, 2014, 45(17):17017 doi: 10.3969/j.issn.1001-9731.2014.17.003
Zhu Q, Zhang Y M, Hu C Y, et al. Progress of research on modified oxide semiconductor gas sensor. J Funct Mater, 2014, 45(17): 17017 doi: 10.3969/j.issn.1001-9731.2014.17.003
|
[4] |
Zang X N, Zhou Q, Chang J, et al. Graphene and carbon nanotube (CNT) in MEMS/NEMS applications. Microelectron Eng, 2015, 132: 192 doi: 10.1016/j.mee.2014.10.023
|
[5] |
Choi S J, Kim I D. Recent developments in 2D nanomaterials for chemiresistive-type gas sensors. Electron Mater Lett, 2018, 14(3): 221 doi: 10.1007/s13391-018-0044-z
|
[6] |
Kim I D, Rothschild A, Tuller H L. Advances and new directions in gas-sensing devices. Acta Mater, 2013, 61(3): 974 doi: 10.1016/j.actamat.2012.10.041
|
[7] |
Zhao M T, Yuan K, Wang Y, et al. Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nature, 2016, 539(7627): 76 doi: 10.1038/nature19763
|
[8] |
Zhou H C, Kitagawa S. Metal-organic frameworks (MOFs). Chem Soc Rev, 2014, 43(16): 5415 doi: 10.1039/C4CS90059F
|
[9] |
鄒星云, 陳明, 曹曉強, 等. MOF材料在水環境污染物去除方面的應用現狀及發展趨勢(Ⅰ). 工程科學學報, 2020, 42(3):289
Zou X Y, Chen M, Cao X Q, et al. Review of application of MOF materials for removal of environmental pollutants from water (Ⅰ). Chin J Eng, 2020, 42(3): 289
|
[10] |
Fei H H, Paw U L, Rogow D L, et al. Synthesis, characterization, and catalytic application of a cationic metal–organic framework: Ag2(4, 4'-bipy)2(O3SCH2CH2SO3). Chem Mater, 2010, 22(6): 2027 doi: 10.1021/cm9032308
|
[11] |
Koo W T, Jang J S, Kim I D. Metal-organic frameworks for chemiresistive sensors. Chem, 2019, 5(8): 1938 doi: 10.1016/j.chempr.2019.04.013
|
[12] |
Zhang L T, Zhou Y, Han S T. The role of metal-organic frameworks in electronic sensors. Angewandte Chemie Int Ed, 2021, 60(28): 15192 doi: 10.1002/anie.202006402
|
[13] |
Campbell M, Dinc? M. Metal–organic frameworks as active materials in electronic sensor devices. Sensors, 2017, 17(5): 1108 doi: 10.3390/s17051108
|
[14] |
翟振宇, 張秀玲, 李從舉. 金屬有機骨架(MOFs)/纖維材料用于電阻式氣體傳感器的研究進展. 工程科學學報, 2020, 42(9):1096
Zhai Z Y, Zhang X L, Li C J. Research progress of metal organic framework (MOFs)/fiber materials used in resistive gas sensors. Chin J Eng, 2020, 42(9): 1096
|
[15] |
Kirchon A, Feng L, Drake H F, et al. From fundamentals to applications: A toolbox for robust and multifunctional MOF materials. Chem Soc Rev, 2018, 47(23): 8611 doi: 10.1039/C8CS00688A
|
[16] |
Smith M K, Mirica K A. Self-organized frameworks on textiles (SOFT): Conductive fabrics for simultaneous sensing, capture, and filtration of gases. J Am Chem Soc, 2017, 139(46): 16759 doi: 10.1021/jacs.7b08840
|
[17] |
Campbell M G, Liu S F, Swager T M, et al. Chemiresistive sensor arrays from conductive 2D metal-organic frameworks. J Am Chem Soc, 2015, 137(43): 13780 doi: 10.1021/jacs.5b09600
|
[18] |
Wu A Q, Wang W Q, Zhan H B, et al. Layer-by-layer assembled dual-ligand conductive MOF nano-films with modulated chemiresistive sensitivity and selectivity. Nano Res, 2021, 14(2): 438 doi: 10.1007/s12274-020-2823-8
|
[19] |
Yao M S, Lv X J, Fu Z H, et al. Layer-by-layer assembled conductive metal-organic framework nanofilms for room-temperature chemiresistive sensing. Angewandte Chemie Int Ed, 2017, 56(52): 16510 doi: 10.1002/anie.201709558
|
[20] |
Hu N, Yang Z, Wang Y, et al. Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide. Nanotechnology, 2014, 25(2): 025502 doi: 10.1088/0957-4484/25/2/025502
|
[21] |
Yao M S, Xiu J W, Huang Q Q, et al. Van der waals heterostructured MOF-on-MOF thin films: Cascading functionality to realize advanced chemiresistive sensing. Angewandte Chemie, 2019, 131(42): 15057 doi: 10.1002/ange.201907772
|
[22] |
Yao M S, Tang W X, Wang G E, et al. MOF thin film-coated metal oxide nanowire array: Significantly improved chemiresistor sensor performance. Adv Mater, 2016, 28(26): 5229 doi: 10.1002/adma.201506457
|
[23] |
Zhou T T, Sang Y T, Wang X X, et al. Pore size dependent gas-sensing selectivity based on ZnO@ZIF nanorod arrays. Sens Actuat B:Chem, 2018, 258: 1099 doi: 10.1016/j.snb.2017.12.024
|
[24] |
Jang J S, Koo W T, Kim D H, et al. In situ coupling of multidimensional MOFs for heterogeneous metal-oxide architectures: Toward sensitive chemiresistors. ACS Central Sci, 2018, 4(7): 929 doi: 10.1021/acscentsci.8b00359
|
[25] |
Xu K, Zhao W, Yu X, et al. MOF-derived Co3O4/Fe2O3 p-n hollow cubes for improved acetone sensing characteristics. Phys E Low Dimensional Syst Nanostructures, 2020, 118: 113869 doi: 10.1016/j.physe.2019.113869
|
[26] |
Jo Y M, Kim T H, Lee C S, et al. Metal–organic framework-derived hollow hierarchical Co3O4 nanocages with tunable size and morphology: Ultrasensitive and highly selective detection of methylbenzenes. ACS Appl Mater Interfaces, 2018, 10(10): 8860 doi: 10.1021/acsami.8b00733
|