Citation: | CHEN Bin, HE Shan-qiang, HE Yong, ZHU Yan-wu, ZHAO Yan-lin, HU Hui-hua, ZHANG Ke-neng. Chloride retention mechanism of coral sand cement stones modified by graphene oxide[J]. Chinese Journal of Engineering, 2022, 44(11): 1956-1965. doi: 10.13374/j.issn2095-9389.2021.03.06.001 |
[1] |
汪稔, 吳文娟. 珊瑚礁巖土工程地質的探索與研究——從事珊瑚礁研究30年. 工程地質學報, 2019, 27(1):202
Wang R, Wu W J. Exploration and research on engineering geological properties of coral reefs—engaged in coral reef research for 30 years. J Eng Geol, 2019, 27(1): 202
|
[2] |
任輝啟, 李新平, 龍志林. 南海島礁工程長期安全與可持續發展保障理論及技術探索//第六屆全國工程安全與防護學術會議論文集. 湘潭, 2018: 329
Ren H Q, Li X P, Long Z L. Theoretical and technical exploration of long-term safety and sustainable development of south island reef project // Proceedings of the 6th National Engineering Safety and Protection Conference. Xiangtan, 2018: 329
|
[3] |
Han X, Feng J J, Shao Y X, et al. Influence of a steel slag powder-ground fly ash composite supplementary cementitious material on the chloride and sulphate resistance of mass concrete. Powder Technol, 2020, 370: 176 doi: 10.1016/j.powtec.2020.05.015
|
[4] |
Feng L, Zhao P, Wang Z J, et al. Improvement of mechanical properties and chloride ion penetration resistance of cement pastes with the addition of pre-dispersed silica fume. Constr Build Mater, 2018, 182: 483 doi: 10.1016/j.conbuildmat.2018.06.053
|
[5] |
Wang D Z, Zhou X M, Fu B, et al. Chloride ion penetration resistance of concrete containing fly ash and silica fume against combined freezing-thawing and chloride attack. Constr Build Mater, 2018, 169: 740 doi: 10.1016/j.conbuildmat.2018.03.038
|
[6] |
何亞伯, 陳保勛, 劉素梅, 等. 預加荷載作用下粉煤灰/硅灰纖維混凝土氯離子滲透性能研究. 湖南大學學報(自然科學版), 2017, 44(3):97
He Y B, Chen B X, Liu S M, et al. Study on resistance of chloride ion penetration in fly ash/silicon ash polypropylene fiber concrete under preloading condition. J Hunan Univ Nat Sci, 2017, 44(3): 97
|
[7] |
朱燕, 梅華, 陳佳佳. 礦物摻合料與化學外加劑影響混凝土抗氯離子滲透性的試驗研究. 硅酸鹽通報, 2016, 35(11):3844
Zhu Y, Mei H, Chen J J. Experimental study on mineral admixtures and additives on chloride ion penetration resistance of concrete. Bull Chin Ceram Soc, 2016, 35(11): 3844
|
[8] |
Mohammed A, Sanjayan J G, Duan W H, et al. Incorporating graphene oxide in cement composites: A study of transport properties. Constr Build Mater, 2015, 84: 341 doi: 10.1016/j.conbuildmat.2015.01.083
|
[9] |
Lv S H, Zhang J, Zhu L L, et al. Preparation of cement composites with ordered microstructures via doping with graphene oxide nanosheets and an investigation of their strength and durability. Materials, 2016, 9(11): 924 doi: 10.3390/ma9110924
|
[10] |
李相國, 任釗鋒, 徐朋輝, 等. 氧化石墨烯復合PVA纖維增強水泥基材料的力學性能及耐久性研究. 硅酸鹽通報, 2018, 37(1):245
Li X G, Ren Z F, Xu P H, et al. Research on mechanical properties and durability of graphene oxide composite PVA fiber reinforced cement-based material. Bull Chin Ceram Soc, 2018, 37(1): 245
|
[11] |
杜濤. 氧化石墨烯水泥基復合材料性能研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2014
Du T. Effect of Graphene Oxide on Properties of Cement-Based Composite [Dissertation]. Harbin: Harbin Institute of Technology, 2014
|
[12] |
王健. 氧化石墨烯對水泥的性能影響及作用機理研究[學位論文]. 北京: 北京建筑大學, 2017
Wang J. Study of the Effect of Graphene Oxide on Cement Performance and Its Mechanism [Dissertation]. Beijing: Beijing University of Civil Engineering and Architecture, 2017
|
[13] |
Shamsaei E, de Souza F B, Yao X P, et al. Graphene-based nanosheets for stronger and more durable concrete: A review. Constr Build Mater, 2018, 183: 642 doi: 10.1016/j.conbuildmat.2018.06.201
|
[14] |
Zhu Y W, Ji H X, Cheng H M, et al. Mass production and industrial applications of graphene materials. Natl Sci Rev, 2018, 5(1): 90 doi: 10.1093/nsr/nwx055
|
[15] |
Kauling A P, Seefeldt A T, Pisoni D P, et al. The worldwide graphene flake production. Adv Mater, 2018, 30(44): 1803784 doi: 10.1002/adma.201803784
|
[16] |
朱長歧, 陳海洋, 孟慶山, 等. 鈣質砂顆粒內孔隙的結構特征分析. 巖土力學, 2014, 35(7):1831
Zhu C Q, Chen H Y, Meng Q S, et al. Microscopic characterization of intra-pore structures of calcareous sands. Rock Soil Mech, 2014, 35(7): 1831
|
[17] |
Chen B, Hu J M. Fractal behavior of coral sand during creep. Front Earth Sci, 2020, 8: 134 doi: 10.3389/feart.2020.00134
|
[18] |
Lv Y, Li F, Liu Y W, et al. Comparative study of coral sand and silica sand in creep under general stress states. Can Geotech J, 2017, 54(11): 1601 doi: 10.1139/cgj-2016-0295
|
[19] |
Chen B, Chao D J, Wu W J, et al. Study on creep mechanism of coral sand based on particle breakage evolution law. J Vibroengineering, 2019, 21(4): 1201 doi: 10.21595/jve.2019.20625
|
[20] |
Zhu Y W, Murali S, Cai W W, et al. Graphene and graphene oxide: Synthesis, properties, and applications. Adv Mater, 2010, 22(35): 3906 doi: 10.1002/adma.201001068
|
[21] |
Kim J, Cote L J, Kim F, et al. Graphene oxide sheets at interfaces. J Am Chem Soc, 2010, 132(23): 8180 doi: 10.1021/ja102777p
|
[22] |
Gong K, Pan Z, Korayem A H, et al. Reinforcing effects of graphene oxide on Portland cement paste. J Mater Civ Eng, 2015, 27(2): A4014010 doi: 10.1061/(ASCE)MT.1943-5533.0001125
|
[23] |
Ma Y F, Zheng Y X, Zhu Y W. Towards industrialization of graphene oxide. Sci China Mater, 2020, 63(10): 1861 doi: 10.1007/s40843-019-9462-9
|
[24] |
Lv S H, Liu J J, Sun T, et al. Effect of GO nanosheets on shapes of cement hydration crystals and their formation process. Constr Build Mater, 2014, 64: 231 doi: 10.1016/j.conbuildmat.2014.04.061
|
[25] |
Lv S H, Ma Y J, Qiu C C, et al. Regulation of GO on cement hydration crystals and its toughening effect. Mag Concr Res, 2013, 65(20): 1246 doi: 10.1680/macr.13.00190
|
[26] |
Lv S H, Ting S, Liu J J, et al. Use of graphene oxide nanosheets to regulate the microstructure of hardened cement paste to increase its strength and toughness. Cryst Eng Comm, 2014, 16(36): 8508 doi: 10.1039/C4CE00684D
|
[27] |
Birenboim M, Nadiv R, Alatawna A, et al. Reinforcement and workability aspects of graphene-oxide-reinforced cement nanocomposites. Compos B Eng, 2019, 161: 68 doi: 10.1016/j.compositesb.2018.10.030
|
[28] |
Cheng S K, Shui Z H, Sun T, et al. Effects of fly ash, blast furnace slag and metakaolin on mechanical properties and durability of coral sand concrete. Appl Clay Sci, 2017, 141: 111 doi: 10.1016/j.clay.2017.02.026
|
[29] |
Kolver K, Jensen O M. Internal curing of concrete-state-of-the-art report of RILEM Technical Committee 196-ICC[R/OL]. RILEM Publications SARL (2007)[2021-03-06].https://www.rilem.net/publication/publication/105
|
[30] |
方毅. 混凝土抗氯離子滲透性能試驗方法研究及工程案例分析[學位論文]. 杭州: 浙江大學, 2018
Fang Y. The Concrete Resistance to Chloride Ion Permeability Test Method Research and Engineering Case Analysis [Dissertation]. Hangzhou: Zhejiang University, 2018
|
[31] |
韓建國, 李克非. 混凝土抗氯離子滲透能力測試方法的適用性. 建筑材料學報, 2015, 18(4):704 doi: 10.3969/j.issn.1007-9629.2015.04.029
Han J G, Li K F. Adaptability of the evaluation methods of concrete anti-chloride penetration ability. J Build Mater, 2015, 18(4): 704 doi: 10.3969/j.issn.1007-9629.2015.04.029
|
[32] |
楊綠峰, 周明, 陳正. 海洋混凝土結構耐久性定量分析與設計. 土木工程學報, 2014, 47(10):70 doi: 10.15951/j.tmgcxb.2014.10.023
Yang L F, Zhou M, Chen Z. Quantitative analysis and design for durability of marine concrete structures. China Civ Eng J, 2014, 47(10): 70 doi: 10.15951/j.tmgcxb.2014.10.023
|
[33] |
楊浩, 劉海峰, 孫帥, 等. 粉煤灰及沙漠砂對混凝土抗氯離子滲透性能影響. 混凝土, 2019(12):95
Yang H, Liu H F, Sun S, et al. Influence of fly ash and desert sand on the chloride permeability of concrete. Concrete, 2019(12): 95
|
[34] |
袁潤章. 膠凝材料學. 武漢: 武漢理工大學出版社, 1996
Yuan R Z. Cementitious Materials Science. Wuhan: Wuhan University of Technology Press, 1996
|
[35] |
呂生華, 孫婷, 劉晶晶, 等. 氧化石墨烯納米片層對水泥基復合材料的增韌效果及作用機制. 復合材料學報, 2014, 31(3):644 doi: 10.13801/j.cnki.fhclxb.2014.03.016
Lü S H, Sun T, Liu J J, et al. Toughening effect and mechanism of graphene oxide nanosheets on cement matrix composites. Acta Mater Compos Sin, 2014, 31(3): 644 doi: 10.13801/j.cnki.fhclxb.2014.03.016
|
[36] |
Djerbi A, Bonnet S, Khelidj A, et al. Influence of traversing crack on chloride diffusion into concrete. Cem Concr Res, 2008, 38(6): 877 doi: 10.1016/j.cemconres.2007.10.007
|
[37] |
Jang S Y, Kim B S, Oh B H. Effect of crack width on chloride diffusion coefficients of concrete by steady-state migration tests. Cem Concr Res, 2011, 41(1): 9 doi: 10.1016/j.cemconres.2010.08.018
|
[38] |
Ismail M, Toumi A, Fran?ois R, et al. Effect of crack opening on the local diffusion of chloride in cracked mortar samples. Cem Concr Res, 2008, 38(8-9): 1106 doi: 10.1016/j.cemconres.2008.03.009
|