<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
LIN Xin-you, YE Chang-qing, SU Lian. Pareto-based optimal control strategy for battery capacity decline[J]. Chinese Journal of Engineering, 2022, 44(11): 1988-1997. doi: 10.13374/j.issn2095-9389.2021.03.01.005
Citation: LIN Xin-you, YE Chang-qing, SU Lian. Pareto-based optimal control strategy for battery capacity decline[J]. Chinese Journal of Engineering, 2022, 44(11): 1988-1997. doi: 10.13374/j.issn2095-9389.2021.03.01.005

Pareto-based optimal control strategy for battery capacity decline

doi: 10.13374/j.issn2095-9389.2021.03.01.005
More Information
  • Corresponding author: E-mail: linxyfzu@126.com
  • Received Date: 2021-03-01
    Available Online: 2021-07-29
  • Publish Date: 2022-11-01
  • As environmental problems become increasingly severe, achieving qualitative breakthroughs in the energy consumption and emissions of traditional internal combustion engine vehicles is difficult. In contrast, new energy vehicles are environmentally friendly and have low fuel consumption, which is important for the future development of vehicles. A plug-in hybrid electric vehicle (PHEV) is widely regarded as the most promising alternative solution for improving energy efficiency and reducing emissions. The optimization of the energy management strategy (EMS) mainly focuses on reducing fuel consumption and improving the economy. However, the durability of the power battery also needs attention, as the lack of life remains a major obstacle to the large-scale commercialization of PHEVs. Because PHEV batteries can obtain relatively cheap power through the grid, the traditional control strategy only considers the full use of the battery power but ignores its excessive use, which will accelerate the decline of the power battery capacity. Therefore, determining how to make full use of the battery power and control the decline of the battery capacity is a new research focus. Based on the semiempirical decay model of the battery, the energy management strategy of balancing the degradation of the battery capacity was established by introducing the battery utilization degree factor. The multiobjective optimization problem was transformed into a single-objective problem by selecting the appropriate weight factor through the Pareto noninferior target domain. A dynamic programming algorithm was used to obtain the global optimal solution of the weight coefficient. The optimal weight coefficient was selected by weighing the fuel consumption and battery capacity decline degree under different weights. In the case of equivalent fuel consumption, the decay rate of battery life can be effectively inhibited when the weight coefficient is 0.9. Finally, the validity of the proposed solution is verified by comparing the online equivalent consumption minimization strategy (ECMS) simulation with the dynamic programming solution under the same weight.

     

  • loading
  • [1]
    Biswas A, Emadi A. Energy management systems for electrified powertrains: State-of-the-art review and future trends. IEEE Trans Veh Technol, 2019, 68(7): 6453 doi: 10.1109/TVT.2019.2914457
    [2]
    丁鎮濤, 鄧濤, 李志飛, 等. 基于安時積分和無跡卡爾曼濾波的鋰離子電池SOC估算方法研究. 中國機械工程, 2020, 31(15):1823 doi: 10.3969/j.issn.1004-132X.2020.15.009

    Ding Z T, Deng T, Li Z F, et al. SOC estimation of lithium-ion battery based on ampere hour integral and unscented Kalman filter. China Mech Eng, 2020, 31(15): 1823 doi: 10.3969/j.issn.1004-132X.2020.15.009
    [3]
    盛繼新, 張邦基, 朱波, 等. 兩擋純電動汽車傳動系統參數優化和試驗對比. 中國機械工程, 2019, 30(7):763 doi: 10.3969/j.issn.1004-132X.2019.07.002

    Sheng J X, Zhang B J, Zhu B, et al. Parameter optimization and experimental comparison of two-speed pure electric vehicle transmission systems. China Mech Eng, 2019, 30(7): 763 doi: 10.3969/j.issn.1004-132X.2019.07.002
    [4]
    Chen S Y, Hung Y H, Wu C H, et al. Optimal energy management of a hybrid electric powertrain system using improved particle swarm optimization. Appl Energy, 2015, 160: 132 doi: 10.1016/j.apenergy.2015.09.047
    [5]
    劉永剛, 盧立來, 解慶波, 等. 基于道路坡度信息的插電式混合動力汽車能量管理策略. 工程科學學報, 2016, 38(7):1025

    Liu Y G, Lu L L, Xie Q B, et al. Energy management strategy for plug-in hybrid electric vehicle based on road slope information. Chin J Eng, 2016, 38(7): 1025
    [6]
    Ming L, Ying Y, Liang L J, et al. Energy management strategy of a plug-in parallel hybrid electric vehicle using fuzzy control. Energy Procedia, 2017, 105: 2660 doi: 10.1016/j.egypro.2017.03.771
    [7]
    Lin X Y, Li X F, Shen Y, et al. Charge depleting range dynamic strategy with power feedback considering fuel-cell degradation. Appl Math Model, 2020, 80: 345 doi: 10.1016/j.apm.2019.11.019
    [8]
    Tian H, Lu Z W, Wang X, et al. A length ratio based neural network energy management strategy for online control of plug-in hybrid electric city bus. Appl Energy, 2016, 177: 71 doi: 10.1016/j.apenergy.2016.05.086
    [9]
    Xie S B, Hu X S, Xin Z K, et al. Pontryagin's Minimum Principle based model predictive control of energy management for a plug-in hybrid electric bus. Appl Energy, 2019, 236: 893 doi: 10.1016/j.apenergy.2018.12.032
    [10]
    Lin X Y, Li H L. Adaptive control strategy extracted from dynamic programming and combined with driving pattern recognition for SPHEB. Int J Automot Technol, 2019, 20(5): 1009 doi: 10.1007/s12239-019-0095-7
    [11]
    華旸, 周思達, 何瑢, 等. 車用鋰離子動力電池組均衡管理系統研究進展. 機械工程學報, 2019, 55(20):73

    Hua Y, Zhou S D, He R, et al. Review on lithium-ion battery equilibrium technology applied for EVs. J Mech Eng, 2019, 55(20): 73
    [12]
    劉桓龍, 陳冠鵬, 王家為. 蓄電池公交車電液并聯混合動力系統設計與能量管理. 汽車工程, 2020, 42(12):1621

    Liu H L, Chen G P, Wang J W. Design and energy management of electro-hydraulic parallel hybrid power system for battery bus. Automot Eng, 2020, 42(12): 1621
    [13]
    史永勝, 施夢琢, 丁恩松, 等. 基于CEEMDAN–LSTM組合的鋰離子電池壽命預測方法. 工程科學學報, 2021, 43(7):985

    Shi Y S, Shi M Z, Ding E S, et al. Life prediction method of lithium ion battery based on CEEMDAN-LSTM combination. Chin J Eng, 2021, 43(7): 985
    [14]
    Bai Y F, He H W, Li J W, et al. Battery anti-aging control for a plug-in hybrid electric vehicle with a hierarchical optimization energy management strategy. J Clean Prod, 2019, 237: 117841 doi: 10.1016/j.jclepro.2019.117841
    [15]
    Feng Y B, Dong Z M. Optimal energy management with balanced fuel economy and battery life for large hybrid electric mining truck. J Power Sources, 2020, 454: 227948 doi: 10.1016/j.jpowsour.2020.227948
    [16]
    Zhang X, Gao Y Z, Guo B J, et al. A novel quantitative electrochemical aging model considering side reactions for lithium-ion batteries. Electrochimica Acta, 2020, 343: 136070 doi: 10.1016/j.electacta.2020.136070
    [17]
    Moura S J, Stein J L, Fathy H K. Battery-health conscious power management in plug-in hybrid electric vehicles via electrochemical modeling and stochastic control. IEEE Trans Control Syst Technol, 2013, 21(3): 679 doi: 10.1109/TCST.2012.2189773
    [18]
    Zhang F T, Yang F Y, Xue D L, et al. Optimization of compound power split configurations in PHEV bus for fuel consumption and battery degradation decreasing. Energy, 2019, 169: 937 doi: 10.1016/j.energy.2018.12.059
    [19]
    Zhang S, Hu X S, Xie S B, et al. Adaptively coordinated optimization of battery aging and energy management in plug-in hybrid electric buses. Appl Energy, 2019, 256: 113891 doi: 10.1016/j.apenergy.2019.113891
    [20]
    林歆悠, 李雪凡, 林海波. 考慮燃料電池衰退的FCHEV反饋優化控制策略. 中國公路學報, 2019, 32(5):153

    Lin X Y, Li X F, Lin H B. Optimazation feedback control strategy based ECMS for plug-in FCHEV considering fuel cell decay. China J Highw Transp, 2019, 32(5): 153
    [21]
    Xie S B, Hu X S, Zhang Q K, et al. Aging-aware co-optimization of battery size, depth of discharge, and energy management for plug-in hybrid electric vehicles. J Power Sources, 2020, 450: 227638 doi: 10.1016/j.jpowsour.2019.227638
    [22]
    Engbroks L, G?rke D, Schmiedler S, et al. Combined energy and thermal management for plug-in hybrid electric vehicles -analyses based on optimal control theory. IFAC PapersOnLine, 2019, 52(5): 610 doi: 10.1016/j.ifacol.2019.09.097
    [23]
    Wang J, Liu P, Hicks-Garner J, et al. Cycle-life model for graphite-LiFePO4 cells. J Power Sources, 2011, 196(8): 3942 doi: 10.1016/j.jpowsour.2010.11.134
    [24]
    Tang L, Rizzoni G, Onori S. Energy management strategy for HEVs including battery life optimization. IEEE Trans Transp Electrif, 2015, 1(3): 211 doi: 10.1109/TTE.2015.2471180
    [25]
    Suri G, Onori S. A control-oriented cycle-life model for hybrid electric vehicle lithium-ion batteries. Energy, 2016, 96: 644 doi: 10.1016/j.energy.2015.11.075
    [26]
    Onori S, Spagnol P, Marano V, et al. A new life estimation method for lithium-ion batteries in plug-in hybrid electric vehicles applications. Int J Power Electron, 2012, 4(3): 302 doi: 10.1504/IJPELEC.2012.046609
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article views (429) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频