Citation: | LIN Xin-you, YE Chang-qing, SU Lian. Pareto-based optimal control strategy for battery capacity decline[J]. Chinese Journal of Engineering, 2022, 44(11): 1988-1997. doi: 10.13374/j.issn2095-9389.2021.03.01.005 |
[1] |
Biswas A, Emadi A. Energy management systems for electrified powertrains: State-of-the-art review and future trends. IEEE Trans Veh Technol, 2019, 68(7): 6453 doi: 10.1109/TVT.2019.2914457
|
[2] |
丁鎮濤, 鄧濤, 李志飛, 等. 基于安時積分和無跡卡爾曼濾波的鋰離子電池SOC估算方法研究. 中國機械工程, 2020, 31(15):1823 doi: 10.3969/j.issn.1004-132X.2020.15.009
Ding Z T, Deng T, Li Z F, et al. SOC estimation of lithium-ion battery based on ampere hour integral and unscented Kalman filter. China Mech Eng, 2020, 31(15): 1823 doi: 10.3969/j.issn.1004-132X.2020.15.009
|
[3] |
盛繼新, 張邦基, 朱波, 等. 兩擋純電動汽車傳動系統參數優化和試驗對比. 中國機械工程, 2019, 30(7):763 doi: 10.3969/j.issn.1004-132X.2019.07.002
Sheng J X, Zhang B J, Zhu B, et al. Parameter optimization and experimental comparison of two-speed pure electric vehicle transmission systems. China Mech Eng, 2019, 30(7): 763 doi: 10.3969/j.issn.1004-132X.2019.07.002
|
[4] |
Chen S Y, Hung Y H, Wu C H, et al. Optimal energy management of a hybrid electric powertrain system using improved particle swarm optimization. Appl Energy, 2015, 160: 132 doi: 10.1016/j.apenergy.2015.09.047
|
[5] |
劉永剛, 盧立來, 解慶波, 等. 基于道路坡度信息的插電式混合動力汽車能量管理策略. 工程科學學報, 2016, 38(7):1025
Liu Y G, Lu L L, Xie Q B, et al. Energy management strategy for plug-in hybrid electric vehicle based on road slope information. Chin J Eng, 2016, 38(7): 1025
|
[6] |
Ming L, Ying Y, Liang L J, et al. Energy management strategy of a plug-in parallel hybrid electric vehicle using fuzzy control. Energy Procedia, 2017, 105: 2660 doi: 10.1016/j.egypro.2017.03.771
|
[7] |
Lin X Y, Li X F, Shen Y, et al. Charge depleting range dynamic strategy with power feedback considering fuel-cell degradation. Appl Math Model, 2020, 80: 345 doi: 10.1016/j.apm.2019.11.019
|
[8] |
Tian H, Lu Z W, Wang X, et al. A length ratio based neural network energy management strategy for online control of plug-in hybrid electric city bus. Appl Energy, 2016, 177: 71 doi: 10.1016/j.apenergy.2016.05.086
|
[9] |
Xie S B, Hu X S, Xin Z K, et al. Pontryagin's Minimum Principle based model predictive control of energy management for a plug-in hybrid electric bus. Appl Energy, 2019, 236: 893 doi: 10.1016/j.apenergy.2018.12.032
|
[10] |
Lin X Y, Li H L. Adaptive control strategy extracted from dynamic programming and combined with driving pattern recognition for SPHEB. Int J Automot Technol, 2019, 20(5): 1009 doi: 10.1007/s12239-019-0095-7
|
[11] |
華旸, 周思達, 何瑢, 等. 車用鋰離子動力電池組均衡管理系統研究進展. 機械工程學報, 2019, 55(20):73
Hua Y, Zhou S D, He R, et al. Review on lithium-ion battery equilibrium technology applied for EVs. J Mech Eng, 2019, 55(20): 73
|
[12] |
劉桓龍, 陳冠鵬, 王家為. 蓄電池公交車電液并聯混合動力系統設計與能量管理. 汽車工程, 2020, 42(12):1621
Liu H L, Chen G P, Wang J W. Design and energy management of electro-hydraulic parallel hybrid power system for battery bus. Automot Eng, 2020, 42(12): 1621
|
[13] |
史永勝, 施夢琢, 丁恩松, 等. 基于CEEMDAN–LSTM組合的鋰離子電池壽命預測方法. 工程科學學報, 2021, 43(7):985
Shi Y S, Shi M Z, Ding E S, et al. Life prediction method of lithium ion battery based on CEEMDAN-LSTM combination. Chin J Eng, 2021, 43(7): 985
|
[14] |
Bai Y F, He H W, Li J W, et al. Battery anti-aging control for a plug-in hybrid electric vehicle with a hierarchical optimization energy management strategy. J Clean Prod, 2019, 237: 117841 doi: 10.1016/j.jclepro.2019.117841
|
[15] |
Feng Y B, Dong Z M. Optimal energy management with balanced fuel economy and battery life for large hybrid electric mining truck. J Power Sources, 2020, 454: 227948 doi: 10.1016/j.jpowsour.2020.227948
|
[16] |
Zhang X, Gao Y Z, Guo B J, et al. A novel quantitative electrochemical aging model considering side reactions for lithium-ion batteries. Electrochimica Acta, 2020, 343: 136070 doi: 10.1016/j.electacta.2020.136070
|
[17] |
Moura S J, Stein J L, Fathy H K. Battery-health conscious power management in plug-in hybrid electric vehicles via electrochemical modeling and stochastic control. IEEE Trans Control Syst Technol, 2013, 21(3): 679 doi: 10.1109/TCST.2012.2189773
|
[18] |
Zhang F T, Yang F Y, Xue D L, et al. Optimization of compound power split configurations in PHEV bus for fuel consumption and battery degradation decreasing. Energy, 2019, 169: 937 doi: 10.1016/j.energy.2018.12.059
|
[19] |
Zhang S, Hu X S, Xie S B, et al. Adaptively coordinated optimization of battery aging and energy management in plug-in hybrid electric buses. Appl Energy, 2019, 256: 113891 doi: 10.1016/j.apenergy.2019.113891
|
[20] |
林歆悠, 李雪凡, 林海波. 考慮燃料電池衰退的FCHEV反饋優化控制策略. 中國公路學報, 2019, 32(5):153
Lin X Y, Li X F, Lin H B. Optimazation feedback control strategy based ECMS for plug-in FCHEV considering fuel cell decay. China J Highw Transp, 2019, 32(5): 153
|
[21] |
Xie S B, Hu X S, Zhang Q K, et al. Aging-aware co-optimization of battery size, depth of discharge, and energy management for plug-in hybrid electric vehicles. J Power Sources, 2020, 450: 227638 doi: 10.1016/j.jpowsour.2019.227638
|
[22] |
Engbroks L, G?rke D, Schmiedler S, et al. Combined energy and thermal management for plug-in hybrid electric vehicles -analyses based on optimal control theory. IFAC PapersOnLine, 2019, 52(5): 610 doi: 10.1016/j.ifacol.2019.09.097
|
[23] |
Wang J, Liu P, Hicks-Garner J, et al. Cycle-life model for graphite-LiFePO4 cells. J Power Sources, 2011, 196(8): 3942 doi: 10.1016/j.jpowsour.2010.11.134
|
[24] |
Tang L, Rizzoni G, Onori S. Energy management strategy for HEVs including battery life optimization. IEEE Trans Transp Electrif, 2015, 1(3): 211 doi: 10.1109/TTE.2015.2471180
|
[25] |
Suri G, Onori S. A control-oriented cycle-life model for hybrid electric vehicle lithium-ion batteries. Energy, 2016, 96: 644 doi: 10.1016/j.energy.2015.11.075
|
[26] |
Onori S, Spagnol P, Marano V, et al. A new life estimation method for lithium-ion batteries in plug-in hybrid electric vehicles applications. Int J Power Electron, 2012, 4(3): 302 doi: 10.1504/IJPELEC.2012.046609
|