Citation: | XIN Yan, WANG Fu-xing. Thermal cycling stability of Ni55Mn25Ga18Ti2 high-temperature shape memory alloy[J]. Chinese Journal of Engineering, 2022, 44(6): 1020-1026. doi: 10.13374/j.issn2095-9389.2021.02.26.001 |
[1] |
Mohd Jani J, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities. Mater Des, 2014, 56: 1078 doi: 10.1016/j.matdes.2013.11.084
|
[2] |
賀志榮, 周超, 劉琳, 等. 形狀記憶合金及其應用研究進展. 鑄造技術, 2017, 38(2):257
He Z R, Zhou C, Liu L, et al. Research progress of shape memory alloys and their applications. Foundry Technol, 2017, 38(2): 257
|
[3] |
Ma J, Karaman I, Noebe R D. High temperature shape memory alloys. Int Mater Rev, 2010, 55(5): 257 doi: 10.1179/095066010X12646898728363
|
[4] |
左舜貴, 金學軍, 金明江. 高溫形狀記憶合金的研究進展. 機械工程材料, 2014, 38(1):1
Zuo S G, Jin X J, Jin M J. Research progress in high temperature shape memory alloys. Mater Mech Eng, 2014, 38(1): 1
|
[5] |
Van Humbeeck J. Shape memory alloys with high transformation temperatures. Mater Res Bull, 2012, 47(10): 2966 doi: 10.1016/j.materresbull.2012.04.118
|
[6] |
Rehman S U, Khan M, Khan A N, et al. Quaternary alloying of copper with Ti50Ni25Pd25 high temperature shape memory alloys. Mater Sci Eng A, 2019, 763: 138148 doi: 10.1016/j.msea.2019.138148
|
[7] |
蔡偉, 孟祥龍, 趙新青, 等. TiNi基高溫形狀記憶合金的馬氏體相變與形狀記憶效應. 中國材料進展, 2012, 31(12):40
Cai W, Meng X L, Zhao X Q, et al. Martensitic transformation and shape memory effect of Ti?Ni based high temperature shape memory alloys. Mater China, 2012, 31(12): 40
|
[8] |
Tong Y X, Fan X M, Shuitcev A V, et al. Effects of Sc addition and aging on microstructure and martensitic transformation of Ni-rich NiTiHfSc high temperature shape memory alloys. J Alloys Compd, 2020, 845: 156331 doi: 10.1016/j.jallcom.2020.156331
|
[9] |
馮昭偉, 崔躍, 尚再艷, 等. 鎳鈦鋯高溫形狀記憶合金的研究進展. 材料導報, 2016, 30(增刊2): 616
Feng Z W, Cui Y, Shang Z Y, et al. Development of NiTiZr high temperature shape memory alloys. Mater Rev, 2016, 30(Sup 2): 616
|
[10] |
López-Ferre?o I, Gómez-Cortés J F, Breczewski T, et al. High-temperature shape memory alloys based on the Cu?Al?Ni system: Design and thermomechanical characterization. J Mater Res Technol, 2020, 9(5): 9972 doi: 10.1016/j.jmrt.2020.07.002
|
[11] |
Xu H B, Li Y, Jiang C B. Ni?Mn?Ga high-temperature shape memory alloys. Mater Sci Eng A, 2006, 438-440: 1065 doi: 10.1016/j.msea.2006.02.187
|
[12] |
Pérez-Checa A, Feuchtwanger J, Barandiaran J M, et al. Ni?Mn?Ga high temperature shape memory alloys: Function stability in β and β+γ regions. J Alloys Compd, 2018, 741: 148 doi: 10.1016/j.jallcom.2018.01.068
|
[13] |
Manzoni A M, Denquin A, Vermaut P, et al. Constrained hierarchical twinning in Ru-based high temperature shape memory alloys. Acta Mater, 2016, 111: 283 doi: 10.1016/j.actamat.2016.03.067
|
[14] |
李啟泉, 李巖, 馬悅輝. 鈦基高溫形狀記憶合金進展綜述. 材料導報, 2020, 34(3):148
Li Q Q, Li Y, Ma Y H. Research progress of titanium-based high-temperature shape memory alloy. Mater Rep, 2020, 34(3): 148
|
[15] |
Buenconsejo P J S, Kim H Y, Hosoda H, et al. Shape memory behavior of Ti–Ta and its potential as a high-temperature shape memory alloy. Acta Mater, 2009, 57(4): 1068 doi: 10.1016/j.actamat.2008.10.041
|
[16] |
Li Y, Xin Y, Chai L, et al. Microstructures and shape memory characteristics of dual-phase Co–Ni–Ga high-temperature shape memory alloys. Acta Mater, 2010, 58(10): 3655 doi: 10.1016/j.actamat.2010.03.001
|
[17] |
Jiang H X, Yang S Y, Wang C P, et al. Martensitic transformation and shape memory effects in Co?V?Al alloys at high temperatures. J Alloys Compd, 2019, 786: 648 doi: 10.1016/j.jallcom.2019.01.216
|
[18] |
S?derberg O, Aaltio I, Ge Y, et al. Ni?Mn?Ga multifunctional compounds. Mater Sci Eng A, 2008, 481-482: 80 doi: 10.1016/j.msea.2006.12.191
|
[19] |
Karaca H E, Karaman I, Basaran B, et al. Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals. Acta Mater, 2006, 54(1): 233 doi: 10.1016/j.actamat.2005.09.004
|
[20] |
Ma Y Q, Jiang C B, Li Y, et al. Study of Ni50+xMn25Ga25?x (x=2?11) as high-temperature shape-memory alloys. Acta Mater, 2007, 55(5): 1533 doi: 10.1016/j.actamat.2006.10.014
|
[21] |
Xu H B, Ma Y Q, Jiang C B. A high-temperature shape-memory alloy Ni54Mn25Ga21. Appl Phys Lett, 2003, 82(19): 3206 doi: 10.1063/1.1572540
|
[22] |
Chernenko V A, Villa E, Besseghini S, et al. Giant two-way shape memory effect in high-temperature Ni?Mn?Ga single crystal. Phys Procedia, 2010, 10: 94 doi: 10.1016/j.phpro.2010.11.081
|
[23] |
Chernenko V A, L’vov V, Pons J, et al. Superelasticity in high-temperature Ni?Mn?Ga alloys. J Appl Phys, 2003, 93(5): 2394 doi: 10.1063/1.1539532
|
[24] |
Ma Y Q, Jiang C B, Feng G, et al. Thermal stability of the Ni54Mn25Ga21 Heusler alloy with high temperature transformation. Scr Mater, 2003, 48(4): 365 doi: 10.1016/S1359-6462(02)00450-5
|
[25] |
Li Y, Xin Y, Jiang C B, et al. Shape memory effect of grain refined Ni54Mn25Ga21 alloy with high transformation temperature. Scr Mater, 2004, 51(9): 849 doi: 10.1016/j.scriptamat.2004.07.010
|
[26] |
辛燕, 柴亮. Fe對Ni?Mn?Ga形狀記憶合金相變和力學性能的影響. 北京科技大學學報, 2013, 35(8):1027
Xin Y, Chai L. Effect of Fe addition on the martensitic transformation behavior and mechanical properties of Ni?Mn?Ga shape memory alloys. J Univ Sci Technol Beijing, 2013, 35(8): 1027
|
[27] |
Ma Y Q, Yang S Y, Liu Y, et al. The ductility and shape-memory properties of Ni?Mn?Co?Ga high-temperature shape-memory alloys. Acta Mater, 2009, 57(11): 3232 doi: 10.1016/j.actamat.2009.03.025
|
[28] |
Ma Y Q, Lai S L, Yang S Y, et al. Ni56Mn25-xCrxGa19 (x=0, 2, 4, 6) high temperature shape memory alloys. Trans Nonferrous Met Soc China, 2011, 21(1): 96 doi: 10.1016/S1003-6326(11)60683-3
|
[29] |
Xin Y, Zhou Y. Martensitic transformation and mechanical properties of NiMnGaV high-temperature shape memory alloys. Intermetallics, 2016, 73: 50 doi: 10.1016/j.intermet.2016.03.005
|
[30] |
Ma Y Q, Yang S Y, Jin W J, et al. Ni56Mn25?xCuxGa19 (x=0, 1, 2, 4, 8) high-temperature shape-memory alloys. J Alloys Compd, 2009, 471(1-2): 570 doi: 10.1016/j.jallcom.2008.07.016
|
[31] |
Zhang X, Liu Q S. A dual-phase Ni?Mn?Ga?Gd high-temperature shape memory alloy with large shape recovery ratio. Rare Met Mater Eng, 2017, 46(9): 2375 doi: 10.1016/S1875-5372(17)30200-X
|
[32] |
董桂馥, 李學慧, 李艷琴, 等. Ti含量對Ni53Mn23.5Ga23.5-xTix鐵磁性形狀記憶合金組織和性能的影響. 稀有金屬材料與工程, 2010, 39(10):1785
Dong G F, Li X H, Li Y Q, et al. Effect of the Ti content on microstructure and properties of Ni53Mn23.5Ga23.5-xTix ferromagnetic shape memory alloy. Rare Met Mater Eng, 2010, 39(10): 1785
|
[33] |
Dong G F, Cai W, Gao Z Y. Microstructure and martensitic transformation of Ni?Mn?Ga?Ti ferromagnetic shape memory alloys. J Alloys Compd, 2008, 465(1-2): 173 doi: 10.1016/j.jallcom.2007.10.138
|
[34] |
Dong G F, Gao Z Y, Tan C L, et al. Phase transformation and magnetic properties of Ni?Mn?Ga?Ti ferromagnetic shape memory alloys. J Alloys Compd, 2010, 508(1): 47 doi: 10.1016/j.jallcom.2010.04.157
|
[35] |
白靜, 楊禛, 趙晨羽, 等. NiMnGaTi鐵磁形狀記憶合金的馬氏體相變和磁性能. 東北大學學報(自然科學版), 2019, 40(10):1398
Bai J, Yang Z, Zhao C Y, et al. Martensitic transformation and magnetic properties of NiMnGaTi ferromagnetic shape memory alloy. J Northeast Univ (Nat Sci)
|
[36] |
王磊. NiMnGa基形狀記憶合金的顯微組織研究[學位論文]. 北京: 華北電力大學(北京), 2018
Wang L. Research on Microstructure of NiMnGa-Based Shape Memory Alloys [Dissertation]. Beijing: North China Electric Power University, 2018
|
[37] |
Zhang X, Sui J H, Yang Z Y, et al. Thermal stability of Ni54Mn25Ga20.9Gd0.1 high-temperature shape memory alloy with large reversible strain. Mater Lett, 2014, 123: 250 doi: 10.1016/j.matlet.2014.02.088
|
[38] |
賈皓東, 周張健. 高強度耐腐蝕ODS?FeCrAl 合金微觀結構、力學性能研究進展. 工程科學學報. DOI: 10.13374/j.issn2095-9389.2020.12.17.005
Jia H D, Zhou Z J. Research progress in microstructure and service performance of high-strength and corrosion-resistant ODS−FeCrAl alloy, Chin J Eng. DOI: 10.13374/j.issn2095-9389.2020.12.17.005
|