<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
XIAO Hong, WANG Pu, LAN Fang, LI Wei-hong, TANG Hai-yan, LI Ai-wu, ZHANG Jia-quan. Stirring strands via traveling-wave magnetic fields to increase the equiaxed crystal ratio of stainless-steel slab castings[J]. Chinese Journal of Engineering, 2021, 43(6): 797-807. doi: 10.13374/j.issn2095-9389.2021.02.09.001
Citation: XIAO Hong, WANG Pu, LAN Fang, LI Wei-hong, TANG Hai-yan, LI Ai-wu, ZHANG Jia-quan. Stirring strands via traveling-wave magnetic fields to increase the equiaxed crystal ratio of stainless-steel slab castings[J]. Chinese Journal of Engineering, 2021, 43(6): 797-807. doi: 10.13374/j.issn2095-9389.2021.02.09.001

Stirring strands via traveling-wave magnetic fields to increase the equiaxed crystal ratio of stainless-steel slab castings

doi: 10.13374/j.issn2095-9389.2021.02.09.001
More Information
  • Electromagnetic stirring of strands by a traveling-wave magnetic field is a cutting-edge continuous casting technology for eliminating the columnar crystal structure that tends to develop in stainless- and/or silicon-steel slab castings. The common ridging defect on the surface of ferritic stainless strip products has been found to be closely related to the well-developed as-cast columnar crystal structure. To explore the various electromagnetic properties of the traveling-wave magnetic fields applied to the secondary cooling zone of a slab casting strand, we used the segmented computational domain method to develop a coupled math model to analyze the electromagnetic, fluid flow, heat transfer, and solidification behaviors, which had been previously determined in an electromagnetic measurement experiment to be a valid approach. The modeling analysis results regarding the traveling-wave magnetic fields show that molten steel stirring has some effect on the end of the slab strand. We also found that the intensity of the magnetic induction when using a box-type electromagnetic stirrer (B-EMS) is much greater on the inside of the strand than on the outside, as compared with its symmetric behavior when applying a roller-type electromagnetic stirrer (R-EMS). At an electrical power of 400 kW and frequency of 7 Hz, the current intensity of the R-EMS is higher than that of the B-EMS by 75 A, achieving a more efficient stirring effect for promoting equiaxed crystal nucleation in front of the solidified shell. In casting experiments in a stainless-steel slab caster, both the B-EMS and R-EMS are found to inhibit the growth of columnar crystals through nucleation of the heads of the dendrites, which realizes an equiaxed crystal ratio of the slab casting 45% higher than its threshold value. In addition, an R-MES with two pairs of rollers using inverse thrust EMS forces can produce an equiaxed crystal ratio 17% higher than that achieved by the B-EMS, and can thus be used in the casting production of ferritic stainless steels to obtain final strip products with no ridging defects.

     

  • loading
  • [1]
    康喜范. 鐵素體不銹鋼. 北京: 冶金工業出版社, 2012

    Kang X F. Ferritic Stainless Steel. Beijing: Metallurgical Industry Press, 2012
    [2]
    Hunter A, Ferry M. Texture enhancement by inoculation during casting of ferritic stainless steel strip. Metall Mater Trans A, 2002, 33: 1499 doi: 10.1007/s11661-002-0072-y
    [3]
    Hamada J I, Matsumoto Y, Fudanoki F, et al. Effect of initial solidified structure on ridging phenomenon and texture in type 430 ferritic stainless steel sheets. ISIJ Int, 2003, 43(12): 1989 doi: 10.2355/isijinternational.43.1989
    [4]
    Hirata N, Ota H, Kato Y, et al. Change in the orientation of equiaxed and columnar grains of 16%Cr steels during hot rolling. Tetsu-to-Hagane, 2003, 89(8): 855 doi: 10.2355/tetsutohagane1955.89.8_855
    [5]
    Modak P, Patra S, Mitra R, et al. Effect of starting as-cast structure on the microstructure-texture evolution during subsequent processing and finally ridging behavior of ferritic stainless steel. Metall Mater Trans A, 2018, 49(6): 2219 doi: 10.1007/s11661-018-4566-7
    [6]
    常正昇, 張喬英, 楊克枝, 等. 板坯連鑄工藝參數對取向硅鋼鑄坯中心等軸晶率的影響. 中國冶金, 2020, 30(1):58

    Chang Z S, Zhang Q Y, Yang K Z, et al. Effects of continuous casting process parameters on central equiaxed crystal ratio of oriented silicon steel slab. China Metall, 2020, 30(1): 58
    [7]
    孔為, 陳迎鋒, 蒼大強. 高硅電工鋼連鑄二冷電磁攪拌應用研究. 鑄造技術, 2018, 39(11):2566

    Kong W, Chen Y F, Cang D Q. Application of second-cooling electromagnetic stirring in high-silicon electrical steel continuous casting. Foundry Technol, 2018, 39(11): 2566
    [8]
    Burden M H, Hunt J D. The extent of the eutectic range. J Cryst Growth, 1974, 22(4): 328 doi: 10.1016/0022-0248(74)90178-X
    [9]
    Itoh Y, Okajima T, Tashiro K. Refining of solidification structures of type 430 stainless steel by vibration method. Tetsu-to-Hagane, 1980, 66(8): 1093 doi: 10.2355/tetsutohagane1955.66.8_1093
    [10]
    Takeuchi H, Mori H, Ikehara Y, et al. The effects of electromagnetic stirring on cast structure of continuously cast SUS 430 stainless steel slabs. Tetsu-to-Hagane, 1980, 66(6): 638 doi: 10.2355/tetsutohagane1955.66.6_638
    [11]
    Takeuchi H, Ikehara Y, Yanai T, et al. Quality improvement of continuously cast stainless steel blooms through electromagnetic stirring. Tetsu-to-Hagane, 1977, 63(8): 1287 doi: 10.2355/tetsutohagane1955.63.8_1287
    [12]
    Ujiie Y, Maede H, Itoh Y, et al. Improving solidification structure of continuously cast steel by electromagnetic stirring. Tetsu-to-Hagane, 1981, 67(8): 1297 doi: 10.2355/tetsutohagane1955.67.8_1297
    [13]
    Kodukula S, Pet?j?j?rvi M, Savolainen J, et al. Influence of calcium treatment and electromagnetic stirring on ridging in dual-stabilized ferritic stainless steels. Steel Res Int, 2021, 92(2): 2000445 doi: 10.1002/srin.202000445
    [14]
    Kunstreich S. 板坯連鑄的電磁攪拌. 鋼鐵, 2005, 40(9):81 doi: 10.3321/j.issn:0449-749X.2005.09.020

    Kunstreich S. Electromagnetic stirring of slabs. Iron Steel, 2005, 40(9): 81 doi: 10.3321/j.issn:0449-749X.2005.09.020
    [15]
    Barna M, Javurek M, Wimmer P. Numeric simulation of the steel flow in a slab caster with a box-type electromagnetic stirrer. Steel Res Int, 2020, 91(11): 2000067 doi: 10.1002/srin.202000067
    [16]
    Xiao H, Wang P, Yi B, et al. A numerical and experimental study on the solidification structure of Fe–Cr–Ni steel slab casting by roller electromagnetic stirring. Metals, 2021, 11(1): 6
    [17]
    張開, 陳士富, 楊濱, 等. 板坯二冷區電磁攪拌輥布置方式. 遼寧科技大學學報, 2018, 41(5):335

    Zhang K, Chen S F, Yang B, et al. Study on arrangement of S-EMS rollers in secondary cooling zone of slab continuous casting machine. J Univ Sci Technol Liaoning, 2018, 41(5): 335
    [18]
    Aboutalebi M R, Guthrie R I L, Seyedein S H. Mathematical modeling of coupled turbulent flow and solidification in a single belt caster with electromagnetic brake. Appl Math Model, 2007, 31(8): 1671 doi: 10.1016/j.apm.2006.05.012
    [19]
    Jones W P, Launder B E. The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence. Int J Heat Mass Tran, 1973, 16(6): 1119 doi: 10.1016/0017-9310(73)90125-7
    [20]
    張壯, 王璞, 董延楠, 等. 板坯全鑄流三維流動和傳熱凝固行為研究. 連鑄, 2019, 44(6):41

    Zhang Z, Wang P, Dong Y N, et al. Study on three-dimensional flow and heat transfer and solidification behavior in slab continuous casting process. Continuous Cast, 2019, 44(6): 41
    [21]
    李少翔, 王璞, 張家泉, 等. 圓坯凝固末端電磁攪拌作用下的流動與傳熱行為. 工程科學學報, 2019, 41(6):748

    Li S X, Wang P, Zhang J Q, et al. Melt flow and heat transfer at the crater end of round billet continuous casting using final electromagnetic stirring. Chin J Eng, 2019, 41(6): 748
    [22]
    Jiang D B, Zhu M Y, Zhang L F. Numerical simulation of solidification behavior and solute transport in slab continuous casting with S-EMS. Metals, 2019, 9(4): 452 doi: 10.3390/met9040452
    [23]
    Kunstreich S. Electromagnetic stirring for continuous casting. Rev Met Paris, 2003, 100(4): 395 doi: 10.1051/metal:2003198
    [24]
    Liu H P, Wang Z Y, Qiu H. Numerical simulation of fluid flow and solidification in a vertical round bloom caster using a four-port SEN with mold and strand electromagnetic stirring. ISIJ Int, 2020, 60(9): 1924 doi: 10.2355/isijinternational.ISIJINT-2019-738
    [25]
    Li S X, Xiao H, Wang P, et al. Analysis on electromagnetic field of continuous casting mold including a new integral method for calculating electromagnetic torque. Metals, 2019, 9(9): 946 doi: 10.3390/met9090946
    [26]
    An H H, Bao Y P, Wang M, et al. Electromagnetic torque detecting for optimization of in-mould electromagnetic stirring in the billet and bloom continuous casting. Ironmak Steelmak, 2019, 46(9): 845 doi: 10.1080/03019233.2018.1522755
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article views (1548) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频