<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
LIANG Mu-gui, FU Guang, DONG Jin-meng, LI Qiao-qiao. Determination method and its application of effective period for transporting oil and gas by the oil source fault of reservoir separated by caprock[J]. Chinese Journal of Engineering, 2022, 44(8): 1425-1432. doi: 10.13374/j.issn2095-9389.2021.01.28.001
Citation: LIANG Mu-gui, FU Guang, DONG Jin-meng, LI Qiao-qiao. Determination method and its application of effective period for transporting oil and gas by the oil source fault of reservoir separated by caprock[J]. Chinese Journal of Engineering, 2022, 44(8): 1425-1432. doi: 10.13374/j.issn2095-9389.2021.01.28.001

Determination method and its application of effective period for transporting oil and gas by the oil source fault of reservoir separated by caprock

doi: 10.13374/j.issn2095-9389.2021.01.28.001
More Information
  • Corresponding author: E-mail: fuguang2008@126.com
  • Received Date: 2021-01-28
    Available Online: 2021-08-18
  • Publish Date: 2022-07-06
  • In the combination of source rock and reservoir separated by the caprock of a petroliferous basin, the scale of oil and gas accumulation is controlled by the relative length of the effective period of oil and gas transported by the oil source fault. The accurate determination of the effective period of oil and gas transported by the oil source fault in the combination of source rock and reservoir separated by caprock plays an essential role in identifying the oil and gas distributions and guiding oil and gas exploration. Based on a study of the oil–gas transport mechanism and the effective period by the oil source fault of reservoir separated by caprock, a set of determination methods of the effective period for transporting oil and gas by the oil source fault of the reservoir separated by caprock was established herein by coupling the period for transporting oil and gas by the oil source fault and that when the source rocks expelled hydrocarbon. The period for transporting oil and gas by the oil source fault was determined by determining the period when the faults started to destroy the sealing capacity of the mudstone caprock, the period when the faults stopped their activity, and the period when the fault fillers began sealing. The geochemical characteristics of the source rock were used to determine the period when the source rocks expelled hydrocarbon. The application results show that at line L2, the effective period for transporting oil and gas from the F1 oil source fault to the reservoir of the 1st member of Dongying Formation (E3d1) is relatively long (i.e., time: 5.3 Ma). This is conducive to transporting the oil and gas generated by the source rocks of the 1st member of Shahejie Formation (E3s1) to the 3rd member of Dongying Formation (E3d3) through the mudstone caprock of the 2nd member of Dongying Formation (E3d2) to accumulate in the reservoir of E3d1 (the upper part of the structure has not been drilled yet). At line L8, the effective period for transporting oil and gas from the F1 oil source fault to the reservoir of E3d1 is relatively short (i.e., time: 2.4 Ma). Oil and gas are mainly transported by fault fillers, which is not conducive to transporting the oil and gas generated by the source rocks of E3s1 to the E3d1 through the mudstone caprock of E3d2 to accumulate in the reservoir of E3d1. The results are coincident with the fact that small-scale oil and gas have been found near line L8 of the F1 oil source fault in E3d1 of the Nanpu 5th structure, suggesting that the method is feasible for application in the determination of the effective period for transporting oil and gas by the oil source fault of a reservoir separated by caprock.

     

  • loading
  • [1]
    張博為, 付廣, 張居和, 等. 油源斷裂轉換帶裂縫發育及其對油氣控制作用——以冀中坳陷文安斜坡議論堡地區沙二段為例. 吉林大學學報(地球科學版), 2017, 47(2):370

    Zhang B W, Fu G, Zhang J H, et al. Fracture development in oil-migrating fault transition zones and its control on hydrocarbon migration and accumulation: A case study of Es2 oil formation of Yilunpu structure of Wen’an slope of Jizhong depression. J Jilin Univ (Earth Sci Ed), 2017, 47(2): 370
    [2]
    王超, 呂延防, 王權, 等. 油氣跨斷層側向運移評價方法——以渤海灣盆地冀中坳陷霸縣凹陷文安斜坡史各莊鼻狀構造帶為例. 石油勘探與開發, 2017, 44(6): 880

    Wang C, Lü Y F, Wang Q, et al. Evaluations of oil and gas lateral migration across faults: A case study of Shigezhuang nose structure of Wen’an slope in Baxian sag, Jizhong depression, Bohai Bay Basin, China Petroleum Explor Dev, 2017, 44(6): 880
    [3]
    Bouvier J D, Kaars-Sijpesteijn C H, Kluesner D F, et al. Three-dimensional seismic interpretation and fault sealing investigations, Nun River Field, Nigeria. AAPG bulletin, 1989, 73(11): 1397
    [4]
    Knipe R J, Jones G, Fisher Q J. Faulting, fault sealing and fluid flow in hydrocarbon reservoirs: an introduction. Geological Society,London,Special Publications, 1998, 147(1): vii doi: 10.1144/GSL.SP.1998.147.01.01
    [5]
    付廣, 韓剛, 李世朝. 斷裂側接輸導油氣運移部位預測方法及其應用. 石油地球物理勘探, 2017, 52(6):1298

    Fu G, Han G, Li S Z. A prediction method for fracture lateral-connected hydrocarbon migration. Oil Geophys Prospect, 2017, 52(6): 1298
    [6]
    展銘望, 付廣, 仇翠瑩, 等. 一種新的斷裂破壞泥巖蓋層程度的綜合研究方法. 吉林大學學報(地球科學版), 2017, 47(6):1687

    Zhan M W, Fu G, Qiu C Y, et al. A new predicting method for comprehensive damage degree of mudstone caprock by fault and its application. J Jilin Univ (Earth Sci Ed), 2017, 47(6): 1687
    [7]
    付廣, 展銘望. 活動期斷裂側向封閉的地質條件及其研究方法. 天然氣工業, 2016, 36(10):28 doi: 10.3787/j.issn.1000-0976.2016.10.004

    Fu G, Zhan M W. Geological conditions for lateral sealing of active faults and relevant research methods. Nat Gas Ind, 2016, 36(10): 28 doi: 10.3787/j.issn.1000-0976.2016.10.004
    [8]
    孟思煒, 孫大興, 俞佳慶, 等. 基于面投影微立體光刻技術的三維模擬儲層巖心模型制造. 工程科學學報, 2021, 43(11):1552

    Meng S W, Sun D X, Yu J Q, et al. Fabrication of a three-dimensional simulated reservoir core model based on area projection micro-stereolithography. Chin J Eng, 2021, 43(11): 1552
    [9]
    胡欣蕾, 呂延防, 孫永河, 等. 泥巖蓋層內斷層垂向封閉能力綜合定量評價: 以南堡凹陷5號構造東二段泥巖蓋層為例. 吉林大學學報(地球科學版), 2018, 48(3):705

    Hu X L, Lü Y F, Sun Y H, et al. Comprehensive quantitative evaluation of vertical sealing ability of faults in caprock: An example of Ed2 mudstone caprock in nanpu sag. J Jilin Univ (Earth Sci Ed), 2018, 48(3): 705
    [10]
    呂延防, 許辰璐, 付廣, 等. 南堡凹陷中淺層蓋-斷組合控油模式及有利含油層位預測. 石油與天然氣地質, 2014, 35(1):86 doi: 10.11743/ogg20140111

    Lü Y F, Xu C L, Fu G, et al. Oil-controlling models of caprock-fault combination and prediction of favorable horizons for hydrocarbon accumulation in middle-shallow sequences of Nanpu sag. Oil Gas Geol, 2014, 35(1): 86 doi: 10.11743/ogg20140111
    [11]
    呂延防, 黃勁松, 付廣, 等. 砂泥巖薄互層段中斷層封閉性的定量研究. 石油學報, 2009, 30(6):824 doi: 10.3321/j.issn:0253-2697.2009.06.005

    Lü Y F, Huang J S, Fu G, et al. Quantitative study on fault sealing ability in sandstone and mudstone thin interbed. Acta Petrolei Sin, 2009, 30(6): 824 doi: 10.3321/j.issn:0253-2697.2009.06.005
    [12]
    Fristad T, Groth A, Yielding G, et al. Quantitative fault seal prediction: A case study from Oseberg Syd. Nor Petroleum Soc Special Publ, 1997, 7: 107
    [13]
    Fulljames J R, Zijerveld L J J, Franssen R C M W. Fault seal processes: Systematic analysis of fault seals over geological and production time scales. Nor Petroleum Soc Special Publ, 1997, 7: 51
    [14]
    朱維耀, 陳震, 宋智勇, 等. 中國頁巖氣開發理論與技術研究進展. 工程科學學報, 2021, 43(10):1397

    Zhu W Y, Chen Z, Song Z Y, et al. Research progress in theories and technologies of shale gas development in China. Chin J Eng, 2021, 43(10): 1397
    [15]
    史集建, 付廣, 呂延防, 等. 歧口凹陷沙河街組一段中部區域蓋層封氣能力綜合評價. 石油與天然氣地質, 2011, 32(5):671 doi: 10.11743/ogg20110505

    Shi J J, Fu G, Lü Y F, et al. Comprehensive evaluation of regional seal in the middle of the first member of Shahejie Fm in the Qikou Sag. Oil Gas Geol, 2011, 32(5): 671 doi: 10.11743/ogg20110505
    [16]
    王偉, 付廣, 胡欣蕾. 斷裂對蓋層封氣綜合能力破壞程度的研究方法及其應用. 吉林大學學報(地球科學版), 2017, 47(3):685

    Wang W, Fu G, Hu X L. A method study of destruction degree of faults to caprock comprehensive sealing gas ability and its application. J Jilin Univ (Earth Sci Ed), 2017, 47(3): 685
    [17]
    姜貴璞, 付廣, 孫同文. 利用地震資料確定油源斷裂輸導油氣能力及油氣富集的差異性. 地球物理學進展, 2017, 32(1):160 doi: 10.6038/pg20170122

    Jiang G P, Fu G, Sun T W. Seismic data is used to determine the transportation oil-gas ability of oil source faults and the difference of oil?gas accumulation. Prog Geophys, 2017, 32(1): 160 doi: 10.6038/pg20170122
    [18]
    付廣, 張博為, 吳偉. 區域性泥巖蓋層阻止油氣沿輸導斷裂運移機制及其判別方法. 中國石油大學學報(自然科學版), 2016, 40(3):36

    Fu G, Zhang B W, Wu W. Mechanism and detection of regional mudstone caprock sealing oil and gas migration along transporting fault. J China Univ Petroleum (Ed Nat Sci), 2016, 40(3): 36
    [19]
    F?rseth R B. Shale smear along large faults: Continuity of smear and the fault seal capacity. J Geol Soc, 2006, 163(5): 741 doi: 10.1144/0016-76492005-162
    [20]
    趙密福, 劉澤容, 信荃麟, 等. 惠民凹陷臨南地區斷層活動特征及控油作用. 石油勘探與開發, 2000, 27(6):9 doi: 10.3321/j.issn:1000-0747.2000.06.002

    Zhao M F, Liu Z R, Xin Q L, et al. Fault activity features and its control over oil of Linnan area in Huimin depression. Petroleum Explor Dev, 2000, 27(6): 9 doi: 10.3321/j.issn:1000-0747.2000.06.002
    [21]
    李勤英, 羅鳳芝, 苗翠芝. 斷層活動速率研究方法及應用探討. 斷塊油氣田, 2000, 7(2):15

    Li Q Y, Luo F Z, Miao C Z. Research on fault activity ratio and its application. Fault Block Oil Gas Field, 2000, 7(2): 15
    [22]
    胡明, 付廣, 呂延防, 等. 松遼盆地徐家圍子斷陷斷裂活動時期及其與深層氣成藏關系分析. 地質論評, 2010, 56(5):710

    Hu M, Fu G, Lü Y F, et al. The fault activity period and its relationship to deep gas accumulation in the Xujiaweizi depression, Songliao basin. Geol Rev, 2010, 56(5): 710
    [23]
    劉哲, 呂延防, 孫永河, 等. 同生斷裂分段生長特征及其石油地質意義——以遼河西部凹陷鴛鴦溝斷裂為例. 中國礦業大學學報, 2012, 41(5):793

    Liu Z, Lü Y F, Sun Y H, et al. Characteristics and significance of syngenetic fault segmentation in hydrocarbon accumulation: An example of Yuanyanggou fault in western sag, Liaohe depression. J China Univ Min Technol, 2012, 41(5): 793
    [24]
    譚開俊, 衛平生, 呂錫敏, 等. 地層古厚度定量恢復方法研究及應用— —以準噶爾盆地陸東地區為例. 天然氣工業, 2005, 25(10):24 doi: 10.3321/j.issn:1000-0976.2005.10.008

    Tan K J, Wei P S, Lü X M, et al. Research on quantitative resumption method of stratum paleothickness and its application—aking ludong area in zhunge'er basin as an example. Nat Gas Ind, 2005, 25(10): 24 doi: 10.3321/j.issn:1000-0976.2005.10.008
    [25]
    付廣, 王浩然, 胡欣蕾. 斷裂帶蓋層油氣封蓋斷接厚度下限的預測方法及其應用. 中國石油大學學報(自然科學版), 2015, 39(3):30

    Fu G, Wang H R, Hu X L. Prediction method and application of caprock faulted-contact thickness lower limit for oil-gas sealing in fault zone. J China Univ Petroleum (Ed Nat Sci), 2015, 39(3): 30
    [26]
    付廣, 董金夢, 彭萬濤. 斷蓋配置滲漏與封閉轉換時期的確定方法及其應用. 沉積學報, 2020, 38(4):868

    Fu G, Dong J M, Peng W T. Determination method and application for the conversion period of fault-caprock configuration leakage and sealing. Acta Sedimentol Sin, 2020, 38(4): 868
    [27]
    史集建, 李麗麗, 付廣, 等. 蓋層內斷層垂向封閉性定量評價方法及應用. 吉林大學學報(地球科學版), 2012, 42(增刊2): 162

    Shi J J, Li L L, Fu G, et al. Quantitative evaluation method and application of vertical sealing property of faults in caprock. J Jilin Univ (Earth Sci Ed), 2012, 42(Suppl 2): 162
    [28]
    付廣, 楊勉, 呂延防, 等. 斷層古側向封閉性定量評價方法及其應用. 石油學報, 2013, 34(增刊1): 78

    Fu G, Yang M, Lü Y F, et al. A quantitative evaluation method for ancient lateral sealing of fault. Acta Petrolei Sin, 2013, 34(Suppl 1): 78
    [29]
    邵新軍, 劉震, 崔文富. 沉積盆地地層古埋深的恢復. 石油勘探與開發, 1999, 26(3):53

    Shao X J, Liu Z, Cui W F. Restoration of the paleoburial depth of strata in deposition basin. Petroleum Explor Dev, 1999, 26(3): 53
    [30]
    吳國平, 蘇江玉, 成實, 等. 基于自然伽馬測井信號的維納濾波法求取泥質含量. 地球科學, 2008, 33(4):572

    Wu G P, Su J Y, Cheng S, et al. A method for obtaining shaliness using Wiener filtering based on logging data natural gamma ray. Earth Sci, 2008, 33(4): 572
    [31]
    范柏江, 董月霞, 龐雄奇. 有效源巖的精確厘定及其排烴量: 以南堡凹陷為例. 中南大學學報(自然科學版), 2012, 43(1):229

    Fan B J, Dong Y X, Pang X Q. Establishment of effective source rock and hydrocarbon expulsion quantity: Taking Nanpu sag for example. J Central South Univ (Sci Technol), 2012, 43(1): 229
    [32]
    唐建超, 李赫, 張洪宇, 等. 南堡凹陷5號構造沙一段砂體精細識別. 石油地球物理勘探, 2016, 51(增刊1): 64

    Tang J C, Li H, Zhang H Y, et al. Sandbody identification in the first member of Sha-1 of Nanpu Structure 5. Oil Geophys Prospect, 2016, 51(Suppl 1): 64
    [33]
    劉哲, 付廣, 呂延防, 等. 南堡凹陷斷裂對油氣成藏控制作用的定量評價. 中國石油大學學報(自然科學版), 2013, 37(1):27

    Liu Z, Fu G, Lü Y F, et al. Quantitative evaluation for control of faults on hydrocarbon accumulation in Nanpu sag. J China Univ Petroleum (Ed Nat Sci), 2013, 37(1): 27
    [34]
    付廣, 梁木桂, 鄒倩, 等. 源斷蓋時間匹配有效性的研究方法及其應用. 中國石油大學學報(自然科學版), 2020, 44(1):25

    Fu G, Liang M G, Zou Q, et al. Research method and its application to effectiveness of time matching of source-fault-caprock. J China Univ Petroleum (Ed Nat Sci), 2020, 44(1): 25
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)

    Article views (430) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频