<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
WANG Pu, TIE Zhan-peng, XIAO Hong, ZHANG Zhuang, TANG Hai-yan, MIAO Hong-sheng, ZHANG Jia-quan. Macrostructure and macrosegregation behavior of bloom products under various flow control modes of the casting process[J]. Chinese Journal of Engineering, 2021, 43(8): 1081-1089. doi: 10.13374/j.issn2095-9389.2021.01.27.007
Citation: WANG Pu, TIE Zhan-peng, XIAO Hong, ZHANG Zhuang, TANG Hai-yan, MIAO Hong-sheng, ZHANG Jia-quan. Macrostructure and macrosegregation behavior of bloom products under various flow control modes of the casting process[J]. Chinese Journal of Engineering, 2021, 43(8): 1081-1089. doi: 10.13374/j.issn2095-9389.2021.01.27.007

Macrostructure and macrosegregation behavior of bloom products under various flow control modes of the casting process

doi: 10.13374/j.issn2095-9389.2021.01.27.007
More Information
  • Corresponding author: E-mail: jqzhang@metall.ustb.edu.cn
  • Received Date: 2020-01-27
    Available Online: 2021-03-08
  • Publish Date: 2021-08-25
  • Owing to the large cross-section and wide solidification-temperature zone, bloom castings of medium- and high-carbon steels are prone to severe central shrinkage and macrosegregation defects. Flow control technologies such as nozzle injection mode and electromagnetic stirring, together with the casting speed, play a key role in the as-cast macrostructure and macrosegregation distribution in bloom castings achieving soundness and compositional homogeneity of the final as-rolled products. Based on the production process of a medium-carbon-steel bloom casting and its heavy section bars, various flow control modes have been adopted in the casting production to study their effects on the semiproduct solidification structure and the carbon distribution across the bloom section and the following rolled bars. The conventional nozzle with a single straight port shows that the equiaxed crystal ratio in the casting process can only increase from 6.06% to 11.71% with the M-EMS intensity changes from 0 to 800 A, in which a shrinkage cavity and macrosegregation exist along the centerline on the strand casting. While the novel five-port nozzle has been adopted, the equiaxed crystal ratio can reach 23.1% even with the M-EMS power off, and the center cavity index drops down to grade 1.0 or below, meeting the requirement of microvoid flaw detection for the bar products. Additionally, the carbon segregation across the bloom cross-section is observed to resemble an M-shaped curve with a maximum carbon segregation index in the columnar to equiaxed transition zone instead of the popular center region. For the heavy section bars rolled from bloom casting, a similar carbon distribution pattern as the cast is observed after hot working but with an even higher centerline segregation index. Therefore, considering the special quality requirements for the subsequent hot processing, the macrostructure and pattern and intensity of macro-segregation should be regulated from the beginning of casting with a reasonable flow control mode as mentioned in the study.

     

  • loading
  • [1]
    王璞, 李少翔, 張壯, 等. 組合攪拌模式對連鑄特殊鋼大方坯凝固行為的影響. 機械工程學報, 2020, 56(12):99 doi: 10.3901/JME.2020.12.099

    Wang P, Li S X, Zhang Z, et al. Effect of combined stirring modes on the solidification behavior of special steel bloom casting. J Mech Eng, 2020, 56(12): 99 doi: 10.3901/JME.2020.12.099
    [2]
    Sun H, Li L. Application of swirling flow nozzle and investigation of superheat dissipation casting for bloom continuous casing. Ironmak Steelmak, 2016, 43(3): 228 doi: 10.1179/1743281215Y.0000000039
    [3]
    Jiang D B, Zhu M Y. Center segregation with final electromagnetic stirring in billet continuous casting process. Metall Mater Trans B, 2017, 48(1): 444 doi: 10.1007/s11663-016-0864-x
    [4]
    Ayata K, Mori T, Fujimoto T, et al. Improvement of macrosegregation in continuously cast bloom and billet by electromagnetic stirring. Trans Iron Steel Inst Jpn, 1984, 24(11): 931 doi: 10.2355/isijinternational1966.24.931
    [5]
    Wu H J, Wei N, Bao Y P, et al. Effect of M-EMS on the solidification structure of a steel billet. Int J Miner Metall Mater, 2011, 18(2): 159 doi: 10.1007/s12613-011-0416-y
    [6]
    吳清明, 許偉陽, 顏慧成, 等. 20CrMnTiH齒輪鋼大方坯軋制圓鋼宏觀碳偏析控制. 鋼鐵, 2012, 47(5):23

    Wu Q M, Xu W Y, Yan H C, et al. Carbon macro-segregation control of rolled bar produced from cast bloom of 20CrMnTiH steel. Iron Steel, 2012, 47(5): 23
    [7]
    Sun H B, Zhang J Q. Study on the macrosegregation behavior for the bloom continuous casting: Model development and validation. Metall Mater Trans B, 2014, 45(3): 1133 doi: 10.1007/s11663-013-9986-6
    [8]
    Wang P, Tie Z P, Li S X, et al. Effect of M-EMS current intensity on the subsurface segregation and internal solidification structure for bloom casting of 42CrMo steel. Ironmak Steelmak, 2021: 1
    [9]
    安航航, 包燕平, 王敏, 等. 凝固末端電磁攪拌和輕壓下復合技術對大方坯高碳鋼偏析和中心縮孔的影響. 工程科學學報, 2017, 39(7):996

    An H H, Bao Y P, Wang M, et al. Effect of combining F-EMS and MSR on the segregation and shrinkage cavity in continuously cast high-carbon steel blooms. Chin J Eng, 2017, 39(7): 996
    [10]
    丁寧, 包燕平, 孫奇松, 等. 末端電磁攪拌位置確定及對SWRH82B鋼中心偏析的影響. 北京科技大學學報, 2011, 33(1):17

    Ding N, Bao Y P, Sun Q S, et al. Location determination of final electromagnetic stirring and its effect on central carbon segregation for SWRH82B steel. J Univ Sci Technol Beijing, 2011, 33(1): 17
    [11]
    王彪, 謝植, 賈光霖, 等. 凝固末端電磁攪拌參數確定及其對中心偏析的影響. 鋼鐵, 2007, 42(3):18 doi: 10.3321/j.issn:0449-749X.2007.03.005

    Wang B, Xie Z, Jia G L, et al. Parameter determination and effects on center segregation of F-EMS. Iron Steel, 2007, 42(3): 18 doi: 10.3321/j.issn:0449-749X.2007.03.005
    [12]
    王曉東, 王寶峰, 曹建剛, 等. 大方坯末端電磁攪拌位置和連鑄工藝參數的確定. 鋼鐵, 2011, 46(8):40

    Wang X D, Wang B F, Cao J G, et al. Determination of F-EMS position and process parameters in bloom continuous caster. Iron Steel, 2011, 46(8): 40
    [13]
    Li S X, Han Z Q, Zhang J Q. Numerical modeling of the macrosegregation improvement in continuous casting blooms by using F-EMS. JOM, 2020, 72(11): 4117 doi: 10.1007/s11837-020-04363-6
    [14]
    陳亮, 宋波, 陳天明, 等. 45鋼連鑄大方坯中心疏松與縮孔控制. 鋼鐵, 2018, 53(8):49

    Chen L, Song B, Chen T M, et al. Control countermeasures of center porosity and shrinkage in 45 steel continuous casting bloom. Iron Steel, 2018, 53(8): 49
    [15]
    Sun H B, Zhang J Q. Macrosegregation improvement by swirling flow nozzle for bloom continuous castings. Metall Mater Trans B, 2014, 45(3): 936 doi: 10.1007/s11663-013-9999-1
    [16]
    孫海波, 韓占光, 錢宏智, 等. 注流方式對大方坯連鑄結晶器內鋼水流動與溫度狀態影響. 北京科技大學學報, 2010, 32(9):1131

    Sun H B, Han Z G, Qian H Z, et al. Effects of injection modes on the flow pattern and temperature distribution of molten steel in a bloom casting mould. J Univ Sci Technol Beijing, 2010, 32(9): 1131
    [17]
    程曉文, 付謙惠, 戴方欽, 等. 旋流水口澆鑄技術在大方坯連鑄的應用研究. 煉鋼, 2015, 31(5):32

    Cheng X W, Fu Q H, Dai F Q, et al. Application of swirling flow nozzle technology for bloom continuous castings. Steelmaking, 2015, 31(5): 32
    [18]
    王璞, 李少翔, 唐海燕, 等. 大方坯徑向水口旋流效應及其對凝固的影響. 中國冶金, 2019, 29(9):15

    Wang P, Li S X, Tang H Y, et al. Swirling flow effect of radial outlet nozzle for bloom and its effect on initial solidification. China Metall, 2019, 29(9): 15
    [19]
    許偉陽. 連鑄齒輪鋼矩形坯碳“錠型”偏析的形成與控制[學位論文]. 北京: 鋼鐵研究總院, 2012

    Xu W Y. The Formation and Control of Carbon Segregation of Gear Steel in the Bloom Casting Process [Dissertation]. Beijing: Central Iron and Steel Research Institute, 2012
    [20]
    Ji Y, Lan P, Geng H, et al. Behavior of spot segregation in continuously cast blooms and the resulting segregated band in oil pipe steels. Steel Res Int, 2018, 89(3): 1700331 doi: 10.1002/srin.201700331
    [21]
    李博, 張忠鏵, 劉華松, 等. 高強耐蝕管鋼點狀偏析及帶狀缺陷的特征與演變. 金屬學報, 2019, 55(6):762 doi: 10.11900/0412.1961.2018.00557

    Li B, Zhang Z H, Liu H S, et al. Characteristics and evolution of the spot segregations and banded defects in high strength corrosion resistant tube steel. Acta Metall Sin, 2019, 55(6): 762 doi: 10.11900/0412.1961.2018.00557
    [22]
    Xu Z G, Wang X H, Jiang M, et al. Investigation on formation of equiaxed zone in low carbon steel slabs. Metall Res Technol, 2016, 113(1): 106 doi: 10.1051/metal/2015053
    [23]
    Wang P, Zhang Z, Tie Z P, et al. Initial transfer behavior and solidification structure evolution in a large continuously cast bloom with a combination of nozzle injection mode and M-EMS. Metals, 2019, 9(10): 1083 doi: 10.3390/met9101083
    [24]
    Sun H B, Li L J, Wu X X, et al. Effect of subsurface negative segregation induced by M-EMS on componential homogeneity for bloom continuous casting. Metall Res Technol, 2018, 115(6): 603 doi: 10.1051/metal/2018031
    [25]
    牛亮, 仇圣桃, 趙俊學, 等. 連鑄工藝參數對38CrMoAl大圓坯碳偏析的影響. 鋼鐵研究學報, 2018, 30(5):359

    Niu L, Qiu S T, Zhao J X, et al. Effects of continuous casting process parameters on carbon segregation degree of 38CrMoAl steel big round billet. J Iron Steel Res, 2018, 30(5): 359
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article views (730) PDF downloads(75) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频