<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
ZONG Le, XU Liu-jie, LUO Chun-yang, WEI Shi-zhong. Refractory high-entropy alloys: A review of preparation methods and properties[J]. Chinese Journal of Engineering, 2021, 43(11): 1459-1473. doi: 10.13374/j.issn2095-9389.2021.01.27.003
Citation: ZONG Le, XU Liu-jie, LUO Chun-yang, WEI Shi-zhong. Refractory high-entropy alloys: A review of preparation methods and properties[J]. Chinese Journal of Engineering, 2021, 43(11): 1459-1473. doi: 10.13374/j.issn2095-9389.2021.01.27.003

Refractory high-entropy alloys: A review of preparation methods and properties

doi: 10.13374/j.issn2095-9389.2021.01.27.003
More Information
  • Corresponding author: E-mail: wmxlj@126.com
  • Received Date: 2021-01-27
    Available Online: 2021-03-10
  • Publish Date: 2021-11-25
  • Alloying is one of the main ways to achieve desirable properties in materials. The design concept is based on one or two metal elements, supplemented with multiple trace elements to achieve altered or optimized properties. With the advancement in technology, the traditional alloy has evolved from simple to complex compositions, thus improving their properties and promoting the progress of civilization. High-entropy alloys (HEAs) are a new type of multi-master alloys that are popular in the recent two decades. Unlike conventional alloys, HEAs comprise multiple alloying elements according to the isoatomic or non-isoatomic ratios and have several unique properties, such as high strength and hardness, excellent wear and corrosion resistance, thermal stability, and irradiation resistance. Refractory high-entropy alloys (RHEAs), HEAs made of refractory metals, have attracted great attention because of their excellent high-temperature mechanical properties. This paper discusses RHEAs from three aspects: processing methods, microstructure, and properties. Finally, this work presents the development and future prospects of RHEAs. RHEAs represented by MoNbTaVW alloys show better compressive yield strengths at high temperatures and a slower change of yield strength with temperature than traditional Ni-based high-temperature alloys. Compared with commercial superalloys, refractory metals, refractory alloys, and tool steels, RHEAs, such as MoNbTaVW, MoNbTaTiZr, and HfNbTiZr, show excellent wear resistance. RHEAs represented by W38Ta36Cr15V11 have no dislocation ring defect structure and excellent anti-irradiation performance after irradiation, except for the precipitation of small particles in the second phase. In this paper, two directions of future development of RHEAs were proposed: (1) establishing high-throughput experimental and computational methods to continue exploring composition and structural models of RHEAs and (2) exploring the service behavior of RHEAs in a multi-field coupled environment.

     

  • loading
  • [1]
    Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6(5): 299 doi: 10.1002/adem.200300567
    [2]
    Yeh J W, Lin S J, Chin T S, et al. Formation of simple crystal structures in Cu?Co?Ni?Cr?Al?Fe?Ti?V alloys with multiprincipal metallic elements. Metall Mater Trans A, 2004, 35(8): 2533 doi: 10.1007/s11661-006-0234-4
    [3]
    Tsai Y L, Wang S F, Bor H Y, et al. Effects of alloy elements on microstructure and creep properties of fine-grained nickel-based superalloys at moderate temperatures. Mater Sci Eng A, 2013, 571: 155 doi: 10.1016/j.msea.2013.02.002
    [4]
    楊曉寧, 鄧偉林, 黃曉波, 等. 高熵合金制備方法進展. 熱加工工藝, 2014, 43(22):30

    Yang X N, Deng W L, Huang X B, et al. Research on preparation methods of high-entropy alloy. Hot Work Technol, 2014, 43(22): 30
    [5]
    郭文晶. 機械合金化NbMoTaW(V)高熔點高熵合金的組織及其性能[學位論文]. 廣州: 華南理工大學, 2016

    Guo W J. Microstructure and Mechanical Properties of NbMoTaW(V) High-Entropy Alloy Prepared by Mechanical Alloying [Dissertation]. Guangzhou: South China University of Technology, 2016
    [6]
    Liu Y, Zhang Y, Zhang H, et al. Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5 Six high-entropy composites. J Alloys Compd, 2017, 694: 869 doi: 10.1016/j.jallcom.2016.10.014
    [7]
    何春靜, 劉雄軍, 張盼, 等. 粉末冶金在高熵材料中的應用. 工程科學學報, 2019, 41(12):1501

    He C J, Liu X J, Zhang P, et al. Applications of powder metallurgy technology in high-entropy materials. Chin J Eng, 2019, 41(12): 1501
    [8]
    Sheng W J, Yang X, Wang C, et al. Nano-crystallization of high-entropy amorphous NbTiAlSiWxNy films prepared by magnetron sputtering. Entropy, 2016, 18(6): 226 doi: 10.3390/e18060226
    [9]
    辛蔚, 王玉江, 魏世丞, 等. 熱噴涂制備高熵合金涂層的研究現狀與展望. 工程科學學報, 2021, 43(2):170

    Xin W, Wang Y J, Wei S C, et al. Research progress of the preparation of high entropy alloy coatings by spraying. Chin J Eng, 2021, 43(2): 170
    [10]
    Chen Y Y, Duval T, Hung U D, et al. Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel. Corros Sci, 2005, 47(9): 2257 doi: 10.1016/j.corsci.2004.11.008
    [11]
    Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011, 19(5): 698 doi: 10.1016/j.intermet.2011.01.004
    [12]
    Han Z D, Luan H W, Liu X, et al. Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys. Mater Sci Eng A, 2018, 712: 380 doi: 10.1016/j.msea.2017.12.004
    [13]
    Yan X H, Li J S, Zhang W R, et al. A brief review of high-entropy films. Mater Chem Phys, 2018, 210: 12 doi: 10.1016/j.matchemphys.2017.07.078
    [14]
    Senkov O N, Scott J M, Senkova S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J Alloys Compd, 2011, 509(20): 6043 doi: 10.1016/j.jallcom.2011.02.171
    [15]
    Senkov O N, Scott J M, Senkova S V, et al. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J Mater Sci, 2012, 47(9): 4062 doi: 10.1007/s10853-012-6260-2
    [16]
    Yang X, Zhang Y, Liaw P K. Microstructure and compressive properties of NbTiVTaAlx high entropy alloys. Procedia Eng, 2012, 36: 292 doi: 10.1016/j.proeng.2012.03.043
    [17]
    Zhang Y, Yang X, Liaw P K. Alloy design and properties optimization of high-entropy alloys. JOM, 2012, 64(7): 830 doi: 10.1007/s11837-012-0366-5
    [18]
    Senkov O N, Senkova S V, Miracle D B, et al. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr?Nb?Ti?V?Zr system. Mater Sci Eng A, 2013, 565: 51 doi: 10.1016/j.msea.2012.12.018
    [19]
    Senkov O N, Senkova S V, Woodward C, et al. Low-density, refractory multi-principal element alloys of the Cr?Nb?Ti?V?Zr system: Microstructure and phase analysis. Acta Mater, 2013, 61(5): 1545 doi: 10.1016/j.actamat.2012.11.032
    [20]
    Wu Y D, Cai Y H, Wang T, et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties. Mater Lett, 2014, 130: 277 doi: 10.1016/j.matlet.2014.05.134
    [21]
    Liu C M, Wang H M, Zhang S Q, et al. Microstructure and oxidation behavior of new refractory high entropy alloys. J Alloys Compd, 2014, 583: 162 doi: 10.1016/j.jallcom.2013.08.102
    [22]
    Senkov O N, Woodward C, Miracle D B. Microstructure and properties of aluminum-containing refractory high-entropy alloys. JOM, 2014, 66(10): 2030 doi: 10.1007/s11837-014-1066-0
    [23]
    Senkov O N, Senkova S V, Woodward C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater, 2014, 68: 214 doi: 10.1016/j.actamat.2014.01.029
    [24]
    Stepanov N D, Shaysultanov D G, Salishchev G A, et al. Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Mater Lett, 2015, 142: 153 doi: 10.1016/j.matlet.2014.11.162
    [25]
    Juan C C, Tsai M H, Tsai C W, et al. Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys. Intermetallics, 2015, 62: 76 doi: 10.1016/j.intermet.2015.03.013
    [26]
    Maiti S, Steurer W. Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy. Acta Mater, 2016, 106: 87 doi: 10.1016/j.actamat.2016.01.018
    [27]
    顏建輝, 李凱玲, 汪異, 等. 機械合金化和放電等離子燒結制備NbMoCrTiAl高熵合金. 材料導報, 2019, 33(10):1671 doi: 10.11896/cldb.18020113

    Yan J H, Li K L, Wang Y, et al. NbMoCrTiAl high-entropy alloy prepared by mechanical alloying and spark plasma sintering. Mater Rep, 2019, 33(10): 1671 doi: 10.11896/cldb.18020113
    [28]
    Yao H W, Qiao J W, Hawk J A, et al. Mechanical properties of refractory high-entropy alloys: experiments and modeling. J Alloys Compd, 2017, 696: 1139 doi: 10.1016/j.jallcom.2016.11.188
    [29]
    Han Z D, Chen N, Zhao S F, et al. Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys. Intermetallics, 2017, 84: 153 doi: 10.1016/j.intermet.2017.01.007
    [30]
    Karantzalis A E, Poulia A, Georgatis E, et al. Phase formation criteria assessment on the microstructure of a new refractory high entropy alloy. Scr Mater, 2017, 131: 51 doi: 10.1016/j.scriptamat.2017.01.004
    [31]
    Chen H, Kauffmann A, Laube S, et al. Contribution of lattice distortion to solid solution strengthening in a series of refractory high entropy alloys. Metall Mater Trans A, 2018, 49(3): 772 doi: 10.1007/s11661-017-4386-1
    [32]
    Fazakas é, Zadorozhnyy V, Varga L K, et al. Experimental and theoretical study of Ti20Zr20Hf20Nb20X20 (X=V or Cr) refractory high-entropy alloys. Int J Refract Met Hard Mater, 2014, 47: 131 doi: 10.1016/j.ijrmhm.2014.07.009
    [33]
    Li J M, Yang X, Zhu R L, et al. Corrosion and serration behaviors of TiZr0.5NbCr0.5VxMoy high entropy alloys in aqueous environments. Metals, 2014, 4(4): 597 doi: 10.3390/met4040597
    [34]
    Gorr B, Azim M, Christ H J, et al. Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys. J Alloys Compd, 2015, 624: 270 doi: 10.1016/j.jallcom.2014.11.012
    [35]
    Gorr B, Müller F, Azim M, et al. High-temperature oxidation behavior of refractory high-entropy alloys: Effect of alloy composition. Oxid Met, 2017, 88(3-4): 339 doi: 10.1007/s11085-016-9696-y
    [36]
    Senkov O N, Isheim D, Seidman D N, et al. Development of a refractory high entropy superalloy. Entropy, 2016, 18(3): 102 doi: 10.3390/e18030102
    [37]
    Jensen J K, Welk B A, Williams R E A, et al. Characterization of the microstructure of the compositionally complex alloy Al1Mo0.5Nb1Ta0.5Ti1Zr1. Scr Mater, 2016, 121: 1 doi: 10.1016/j.scriptamat.2016.04.017
    [38]
    Senkov O N, Jensen J K, Pilchak A L, et al. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr. Mater Des, 2018, 139: 498 doi: 10.1016/j.matdes.2017.11.033
    [39]
    Huang H L, Wu Y, He J Y, et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering. Adv Mater, 2017, 29(30): 1701678 doi: 10.1002/adma.201701678
    [40]
    Jiang H, Jiang L, Lu Y P, et al. Microstructure and mechanical properties of the W-Ni-Co system refractory high-entropy alloys. Mater Sci Forum, 2015, 816: 324 doi: 10.4028/www.scientific.net/MSF.816.324
    [41]
    Yao H W, Qiao J W, Gao M C, et al. NbTaV-(Ti, W) refractory high-entropy alloys: Experiments and modeling. Mater Sci Eng A, 2016, 674: 203 doi: 10.1016/j.msea.2016.07.102
    [42]
    Sosa J M, Jensen J K, Huber D E, et al. Three-dimensional characterisation of the microstructure of an high entropy alloy using STEM/HAADF tomography. Mater Sci Technol, 2015, 31(10): 1250 doi: 10.1179/1743284715Y.0000000049
    [43]
    Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature, 2018, 563(7732): 546 doi: 10.1038/s41586-018-0685-y
    [44]
    Diao H Y, Xie X, Sun F, et al. Mechanical properties of high-entropy alloys. High-Entropy Alloys, 2016: 181
    [45]
    Waseem O A, Lee J, Lee H M, et al. The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy TixWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials. Mater Chem Phys, 2018, 210: 87 doi: 10.1016/j.matchemphys.2017.06.054
    [46]
    Zhang B, Gao M C, Zhang Y, et al. Senary refractory high-entropy alloy CrxMoNbTaVW. Calphad, 2015, 51: 193 doi: 10.1016/j.calphad.2015.09.007
    [47]
    Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci, 2014, 61: 1 doi: 10.1016/j.pmatsci.2013.10.001
    [48]
    Chen S, Yang X, Dahmen K, et al. Microstructures and crackling noise of AlxNbTiMoV high entropy alloys. Entropy, 2014, 16(2): 870 doi: 10.3390/e16020870
    [49]
    Qiao D X, Jiang H, Chang X X, et al. Microstructure and mechanical properties of VTaTiMoAlx refractory high entropy alloys. Mater Sci Forum, 2017, 898: 638 doi: 10.4028/www.scientific.net/MSF.898.638
    [50]
    Gao M C, Zhang B, Yang S, et al. Senary refractory high-entropy alloy HfNbTaTiVZr. Metall Mater Trans A, 2016, 47(7): 3333 doi: 10.1007/s11661-015-3105-z
    [51]
    Zhang B, Gao M C, Zhang Y, et al. Senary refractory high entropy alloy MoNbTaTiVW. Mater Sci Technol, 2015, 31(10): 1207 doi: 10.1179/1743284715Y.0000000031
    [52]
    魏世忠, 徐流杰. 鋼鐵耐磨材料研究進展. 金屬學報, 2020, 56(4):523 doi: 10.11900/0412.1961.2019.00370

    Wei S Z, Xu L J. Review on research progress of steel and iron wear-resistant materials. Acta Metall Sin, 2020, 56(4): 523 doi: 10.11900/0412.1961.2019.00370
    [53]
    Liu X T, Lei W B, Ma L J, et al. Effect of boron on the microstructure, phase assemblage and wear properties of Al05CoCrCuFeNi high-entropy alloy. Rare Met Mater Eng, 2016, 45(9): 2201 doi: 10.1016/S1875-5372(17)30003-6
    [54]
    Tong C J, Chen M R, Yeh J W, et al. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mater Trans A, 2005, 36: 1263 doi: 10.1007/s11661-005-0218-9
    [55]
    Poulia A, Georgatis E, Lekatou A, et al. Dry-sliding wear response of MoTaWNbV high entropy alloy. Adv Eng Mater, 2017, 19(2): 1600535 doi: 10.1002/adem.201600535
    [56]
    Poulia A, Georgatis E, Lekatou A, et al. Microstructure and wear behavior of a refractory high entropy alloy. Int J Refract Met Hard Mater, 2016, 57: 50 doi: 10.1016/j.ijrmhm.2016.02.006
    [57]
    Mathiou C, Poulia A, Georgatis E, et al. Microstructural features and dry - Sliding wear response of MoTaNbZrTi high entropy alloy. Mater Chem Phys, 2018, 210: 126 doi: 10.1016/j.matchemphys.2017.08.036
    [58]
    Ye Y X, Liu C Z, Wang H, et al. Friction and wear behavior of a single-phase equiatomic TiZrHfNb high-entropy alloy studied using a nanoscratch technique. Acta Mater, 2018, 147: 78 doi: 10.1016/j.actamat.2018.01.014
    [59]
    Grigoriev S N, Sobol O V, Beresnev V M, et al. Tribological characteristics of (TiZrHfVNbTa)N coatings applied using the vacuum arc deposition method. J Frict Wear, 2014, 35(5): 359 doi: 10.3103/S1068366614050067
    [60]
    Jayaraj J, Thinaharan C, Ningshen S, et al. Corrosion behavior and surface film characterization of TaNbHfZrTi high entropy alloy in aggressive nitric acid medium. Intermetallics, 2017, 89: 123 doi: 10.1016/j.intermet.2017.06.002
    [61]
    Wang S P, Xu J. TiZrNbTaMo high-entropy alloy designed for orthopedic implants: as-cast microstructure and mechanical properties. Mater Sci Eng C, 2017, 73: 80 doi: 10.1016/j.msec.2016.12.057
    [62]
    Senkov O N, Senkova S V, Dimiduk D M, et al. Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy. J Mater Sci, 2012, 47(18): 6522 doi: 10.1007/s10853-012-6582-0
    [63]
    Gorr B, Mueller F, Christ H J, et al. High temperature oxidation behavior of an equimolar refractory metal-based alloy 20Nb?20Mo?20Cr?20Ti?20Al with and without Si addition. J Alloys Compd, 2016, 688: 468
    [64]
    李天昕, 盧一平, 曹志強, 等. 難熔高熵合金在反應堆結構材料領域的機遇與挑戰. 金屬學報, 2021, 57(1):42 doi: 10.11900/0412.1961.2020.00293

    Li T X, Lu Y P, Cao Z Q, et al. Opportunity and challenge of refractory high-entropy alloys in the field of reactor structural materials. Acta Metall Sin, 2021, 57(1): 42 doi: 10.11900/0412.1961.2020.00293
    [65]
    Egami T, Guo W, Rack P D, et al. Irradiation resistance of multicomponent alloys. Metall Mater Trans A, 2014, 45(1): 180 doi: 10.1007/s11661-013-1994-2
    [66]
    El-Atwani O, Li N, Li M, et al. Outstanding radiation resistance of tungsten-based high-entropy alloys. Sci Adv, 2019, 5(3): eaav2002 doi: 10.1126/sciadv.aav2002
    [67]
    Lu Y P, Huang H F, Gao X Z, et al. A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy. J Mater Sci Technol, 2019, 35(3): 369 doi: 10.1016/j.jmst.2018.09.034
    [68]
    Waseem O A, Ryu H J. Powder metallurgy processing of a WxTaTiVCr high-entropy alloy and its derivative alloys for fusion material applications. Sci Rep, 2017, 7: 1926 doi: 10.1038/s41598-017-02168-3
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(17)  / Tables(1)

    Article views (3423) PDF downloads(588) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频