Citation: | CHE Lang, WANG Bin, ZHAO Peng-fei, ZHU Hong-bin, CHENG Peng, LI Guang-shi, ZHANG Yong-he, LU Xiong-gang. Research progress in the in-situ utilization of lunar soil[J]. Chinese Journal of Engineering, 2021, 43(11): 1433-1446. doi: 10.13374/j.issn2095-9389.2021.01.26.003 |
[1] |
Comstock D, Petro A. NASA’s Centennial Challenges Contributions to ISRU // 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Orlando, 2009: 1025
|
[2] |
張田. 飛向月球: NASA月球探索戰略計劃. 國際太空, 2019(11):8 doi: 10.3969/j.issn.1009-2366.2019.11.003
Zhang T. Forward to the moon: NASA’s strategic plan for lunar exploration. Space Int, 2019(11): 8 doi: 10.3969/j.issn.1009-2366.2019.11.003
|
[3] |
范唯唯, 楊帆, 韓淋, 等. 俄羅斯未來月球探索與開發計劃解析. 科技導報, 2019, 37(16):6
Fan W W, Yang F, Han L, et al. Overview of Russia’s future plan of lunar exploration. Sci Technol Rev, 2019, 37(16): 6
|
[4] |
吳偉仁. 奔向月球. 1版. 北京: 中國宇航出版社, 2007
Wu W R. Destination Moon. 1st Ed. Beijing: China Astronautic Publishing House, 2007
|
[5] |
Sanders G B, Larson W E. Progress made in lunar in situ resource utilization under NASA’s exploration technology and development program. J Aerosp Eng, 2013, 26(1): 5 doi: 10.1061/(ASCE)AS.1943-5525.0000208
|
[6] |
Carrier III W D. Particle size distribution of lunar soil. J Geotech Geoenviron Eng, 2003, 129(10): 956 doi: 10.1061/(ASCE)1090-0241(2003)129:10(956)
|
[7] |
歐陽自遠. 我國月球探測的總體科學目標與發展戰略. 地球科學進展, 2004, 19(3):351 doi: 10.3321/j.issn:1001-8166.2004.03.001
Ouyang Z Y. Scientific objectives of Chinese lunar exploration project and development strategy. Adv Earth Sci, 2004, 19(3): 351 doi: 10.3321/j.issn:1001-8166.2004.03.001
|
[8] |
宋云峰, 趙中偉, 劉旭恒. 外太空冶金. 自然雜志, 2018, 40(4):270 doi: 10.3969/j.issn.0253-9608.2018.04.006
Song Y F, Zhao Z W, Liu X H. Space metallurgy. Chin J Nat, 2018, 40(4): 270 doi: 10.3969/j.issn.0253-9608.2018.04.006
|
[9] |
馮鵬, 包查潤, 張道博, 等. 基于月面原位資源的月球基地建造技術. 工業建筑, 2021, 51(1):169
Feng P, Bao C R, Zhang D B, et al. Construction technology for lunar bases using lunar in situ resources. Ind Constr, 2021, 51(1): 169
|
[10] |
Rasera J N, Cilliers J J, Lamamy J A, et al. The beneficiation of lunar regolith for space resource utilisation: a review. Planet Space Sci, 2020, 186: 104879 doi: 10.1016/j.pss.2020.104879
|
[11] |
鄭永春, 王世杰, 馮俊明, 等. CAS-1模擬月壤. 礦物學報, 2007, 27(增刊1): 571
Zheng Y C, Wang S J, Feng J M, et al. Cas-1 lunar soil stimulant. Acta Mineral Sin, 2007, 27(Suppl 1): 571
|
[12] |
Ling Z C, Jolliff B L, Wang A, et al. Correlated compositional and mineralogical investigations at the Chang’e-3 landing site. Nat Commun, 2015, 6: 8880 doi: 10.1038/ncomms9880
|
[13] |
宋蕾, 徐佼, 唐紅, 等. 模擬月壤成型研究現狀. 礦物學報, 2020, 40(1):47
Song L, Xu J, Tang H, et al. Research progress of the simulated lunar soil molding. Acta Mineral Sin, 2020, 40(1): 47
|
[14] |
賈陽, 申振榮, 黨兆龍, 等. 模擬月壤研究及其在月球探測工程中的應用. 航天器環境工程, 2014, 31(3):241 doi: 10.3969/j.issn.1673-1379.2014.03.002
Jia Y, Shen Z R, Dang Z L, et al. Lunar soil simulant and its engineering application in lunar exploration program. Spacecr Environ Eng, 2014, 31(3): 241 doi: 10.3969/j.issn.1673-1379.2014.03.002
|
[15] |
Hopkinson N, Hague R, Dickens P. Rapid Manufacturing: an Industrial Revolution for the Digital Age. Chichester: John Wiley & Sons, Ltd. , 2005
|
[16] |
Pegna J. Exploratory investigation of solid freeform construction. Autom Constr, 1997, 5(5): 427 doi: 10.1016/S0926-5805(96)00166-5
|
[17] |
Cai L X, Ding L Y, Luo H B, et al. Preparation of autoclave concrete from basaltic lunar regolith simulant: effect of mixture and manufacture process. Constr Build Mater, 2019, 207: 373 doi: 10.1016/j.conbuildmat.2019.02.146
|
[18] |
Meurisse A, Beltzung J C, Kolbe M, et al. Influence of mineral composition on sintering lunar regolith. J Aerosp Eng, 2017, 30(4): 04017014 doi: 10.1061/(ASCE)AS.1943-5525.0000721
|
[19] |
Song L, Xu J, Fan S Q, et al. Vacuum sintered lunar regolith simulant: Pore-forming and thermal conductivity. Ceram Int, 2019, 45(3): 3627 doi: 10.1016/j.ceramint.2018.11.023
|
[20] |
Taylor L A, Meek T T. Microwave sintering of lunar soil: Properties, theory, and practice. J Aerosp Eng, 2005, 18(3): 188 doi: 10.1061/(ASCE)0893-1321(2005)18:3(188)
|
[21] |
Fateri M, Cowley A, Kolbe M, et al. Localized microwave thermal posttreatment of sintered samples of lunar simulant. J Aerosp Eng, 2019, 32(4): 04019051 doi: 10.1061/(ASCE)AS.1943-5525.0001039
|
[22] |
Khoshnevis B, Bodiford M, Burks K, et al. Lunar contour crafting—a novel technique for ISRU-based habitat development // 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, 2005: 538
|
[23] |
Cesaretti G, Dini E, De Kestelier X, et al. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronaut, 2014, 93: 430 doi: 10.1016/j.actaastro.2013.07.034
|
[24] |
Balla V K, Roberson L B, O'Connor G W, et al. First demonstration on direct laser fabrication of lunar regolith parts. Rapid Prototyp J, 2012, 18(6): 451 doi: 10.1108/13552541211271992
|
[25] |
Taylor S L, Jakus A E, Koube K D, et al. Sintering of micro-trusses created by extrusion-3D-printing of lunar regolith inks. Acta Astronaut, 2018, 143: 1 doi: 10.1016/j.actaastro.2017.11.005
|
[26] |
王功, 趙偉, 劉亦飛, 等. 太空制造技術發展現狀與展望. 中國科學:(物理學 力學 天文學), 2020, 50(4):95
Wang G, Zhao W, Liu Y F, et al. Review of space manufacturing technique and developments. Sci Sin (Phys Mech Astron)
|
[27] |
Liu M, Tang W Z, Duan W Y, et al. Digital light processing of lunar regolith structures with high mechanical properties. Ceram Int, 2019, 45(5): 5829 doi: 10.1016/j.ceramint.2018.12.049
|
[28] |
Meurisse A, Makaya A, Willsch C, et al. Solar 3D printing of lunar regolith. Acta Astronaut, 2018, 152: 800 doi: 10.1016/j.actaastro.2018.06.063
|
[29] |
Ceccanti F, Dini E, De Kestelier X, et al. 3D printing technology for a moon outpost exploiting lunar soil // Proceeding of the 61st International Astronautical Congress. Prague, 2010: IAC-10-D3.3.5
|
[30] |
Fateri M, Gebhardt A. Process parameters development of selective laser melting of lunar regolith for on-site manufacturing applications. Int J Appl Ceram Technol, 2015, 12(1): 46 doi: 10.1111/ijac.12326
|
[31] |
Gerdes N, Fokken L G, Linke S, et al. Selective Laser Melting for processing of regolith in support of a lunar base. J Laser Appl, 2018, 30(3): 032018 doi: 10.2351/1.5018576
|
[32] |
邢丹, 葸雄宇, 郭澤世, 等. 模擬月壤制備連續纖維的可行性研究. 中國科學:技術科學, 2020, 50(12):1625 doi: 10.1360/SST-2020-0141
Xing D, Xi X Y, Guo Z S, et al. Study on the feasibility of preparing a continuous fibre using lunar soil simulant. Sci Sin (Technol)
|
[33] |
童慶, 樊霆, 王浩明, 等. 玄武巖特征及熔融析晶性能研究. 中國非金屬礦工業導刊, 2013(6):27
Tong Q, Fan T, Wang H M, et al. Study on morphology and melting crystallization characteristics of basalt. China Non Met Miner Ind, 2013(6): 27
|
[34] |
樊霆, 童慶, 葉文玲, 等. 玄武巖纖維礦物組成形態及熔融析晶特性. 中南大學學報(自然科學版), 2013, 44(10):4307
Fan T, Tong Q, Ye W L, et al. Composition morphology and melting crystallization characteristics of basalt fibre mineral. J Central South Univ (Sci Technol)
|
[35] |
Li S, Lucey P G, Milliken R E, et al. Direct evidence of surface exposed water ice in the lunar polar regions. PNAS, 2018, 115(36): 8907 doi: 10.1073/pnas.1802345115
|
[36] |
Carr B B. Recovery of water or oxygen by reduction of lunar rock. AIAA J, 1963, 1(4): 921 doi: 10.2514/3.1674
|
[37] |
Lu Y H, Mantha D, Reddy R G. Thermodynamic analysis on lunar soil reduced by hydrogen. Metall Mater Trans B, 2010, 41(6): 1321 doi: 10.1007/s11663-010-9411-3
|
[38] |
Denk T, González-pardo A, Cañadas I, et al. Design and Test of a Concentrated Solar Powered Fluidized Bed Reactor for Ilmenite Reduction. 1st Ed. Santiago: Solar Power & Chemical Energy Systems, 2017
|
[39] |
Sargeant H M, Abernethy F A J, Wright I P, et al. Hydrogen reduction of ilmenite: towards an in situ resource utilization demonstration on the surface of the Moon. Planet Space Sci, 2020, 180: 104751 doi: 10.1016/j.pss.2019.104751
|
[40] |
Sargeant H, Abernethy F, Anand M, et al. Experimental development and testing of the ilmenite reduction reaction for a lunar ISRU demonstration with ProSPA // Proceedings of the Lunar and Planetary Science Conference. Houston, 2019: 1797
|
[41] |
Lu Y H, Reddy R G. Extraction of metals and oxygen from lunar soil. High Temp Mater Process, 2008, 27(4): 223
|
[42] |
Gustafson R, White B, Fidler M, et al. Demonstrating the solar carbothermal reduction of lunar regolith to produce oxygen // 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, 2010: 1163
|
[43] |
Loutzenhiser P G, Tuerk O, Steinfeld A. Production of Si by vacuum carbothermal reduction of SiO2 using concentrated solar energy. JOM, 2010, 62(9): 49 doi: 10.1007/s11837-010-0137-0
|
[44] |
Cutler A H, Krag P. A carbothermal scheme for lunar oxygen production // Lunar Bases and Space Activities of the 21st Century. Washington D C, 1985: 559
|
[45] |
Haynes W M. CRC Handbook of Chemistry and Physics. 96th Ed. London: CRC Press, 2016
|
[46] |
Seboldt W, Lingner S, Hoernes S, et al. Lunar Oxygen Extraction Using Fluorine. Massachusetts: Resources of near-earth space, 1993
|
[47] |
Landis G A. Materials refining on the Moon. Acta Astronaut, 2007, 60(10-11): 906 doi: 10.1016/j.actaastro.2006.11.004
|
[48] |
Heiken G H, Vaniman D T, French B M. Lunar Sourcebook, a User's Guide to the Moon. Massachusetts: Harvard University Press, 1991
|
[49] |
Kesterke D G. Electrowinning of Oxygen from Silicate Rocks. 1st Ed. Virginia: US Department of Interior, Bureau of Mines, 1971
|
[50] |
Schreiner S, Sibille L, Dominguez J, et al. Development of a molten regolith electrolysis reactor model for lunar in-situ resource utilization // 8th Symposium on Space Resource Utilization. Kissimmee, 2015: 1180
|
[51] |
Fray D J. Anodic and cathodic reactions in molten calcium chloride. Can Metall Q, 2002, 41(4): 433 doi: 10.1179/cmq.2002.41.4.433
|
[52] |
Fray D J, Farthing T W, Chen Z. Removal of Oxygen from Metal Oxides and Solid Solutions by Electrolysis in a Fused Salt: United States Patent, US 20040159559A1. 2004-8-19
|
[53] |
Ono K, Suzuki R O. A new concept for producing Ti sponge: calciothermic reduction. JOM, 2002, 54(2): 59 doi: 10.1007/BF02701078
|
[54] |
Ono K. Fundamental aspects of calciothermic process to produce titanium. Mater Trans, 2004, 45(5): 1660 doi: 10.2320/matertrans.45.1660
|
[55] |
Vignes A. Extractive Metallurgy 2: Metallurgical Reaction Processes. Hoboken: John Wiley & Sons, Inc., 2013
|
[56] |
Vignes A. Extractive Metallurgy 3: Processing Operations and Routes. Hoboken: John Wiley & Sons, Inc., 2013
|
[57] |
Grjotheim K, Malinovsky M, Matiasovsky K. The effect of different additives on the conductivity of cryolite-alumina melts. JOM, 1969, 21(1): 28 doi: 10.1007/BF03378771
|
[58] |
Kilby K T, Jiao S Q, Fray D J. Current efficiency studies for graphite and SnO2-based anodes for the electro-deoxidation of metal oxides. Electrochimica Acta, 2010, 55(23): 7126 doi: 10.1016/j.electacta.2010.06.049
|
[59] |
Lomax B A, Conti M, Khan N, et al. Proving the viability of an electrochemical process for the simultaneous extraction of oxygen and production of metal alloys from lunar regolith. Planet Space Sci, 2020, 180: 104748 doi: 10.1016/j.pss.2019.104748
|
[60] |
Xie K Y, Shi Z N, Xu J L, et al. Aluminothermic reduction-molten salt electrolysis using inert anode for oxygen and Al-base alloy extraction from lunar soil simulant. JOM, 2017, 69(10): 1963 doi: 10.1007/s11837-017-2478-4
|
[61] |
Steurer W. Vapor phase pyrolysis [J/OL]. NASA Technical Reports Server (1992-01-01) [2021-03-15]. https://ntrs.nasa.gov/citations/19930007702
|
[62] |
Carroll W F. Research on the use of space resources[J/OL]. NASA Technical Reports Server (1983-03-01) [2021-03-15].https://ntrs.nasa.gov/citations/19840008159
|
[63] |
Burton R L, Schubert P J, Rysanek F, et al. Oxygen Extraction Apparatus and Process: United States Patent, US 20090269273A1. 2009-10-29
|
[64] |
Sauerborn M. Pyrolyse von Metalloxiden und Silikaten unter Vakuum mit konzentrierter Solarstrahlung [Dissertation]. Bonn: Rheinische Friedrich-Wilhelms-Universität Bonn, 2005
|
[65] |
Matchett J. Production of Lunar Oxygen Through Vacuum Pyrolysis [Dissertation]. Washington D C: The George Washington University, 2006
|
[66] |
Yabe T, Mohamed M S, Uchida S, et al. Noncatalytic dissociation of MgO by laser pulses towards sustainable energy cycle. J Appl Phys, 2007, 101(12): 123106 doi: 10.1063/1.2743730
|
[67] |
Liao S H, Yabe T, Mohamed M S, et al. Laser-induced Mg production from magnesium oxide using Si-based agents and Si-based agents recycling. J Appl Phys, 2011, 109(1): 013103 doi: 10.1063/1.3520376
|
[68] |
Matsui M, Fukuji N, Nakano M, et al. Alumina reduction by laser sustained plasma for aluminum-based renewable energy cycling. J Renew Sustain Energy, 2013, 5(3): 039101 doi: 10.1063/1.4807607
|
[69] |
Colao F, Lazic V, Fantoni R, et al. A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples. Spectrochimica Acta B:At Spectrosc, 2002, 57(7): 1167 doi: 10.1016/S0584-8547(02)00058-7
|
[70] |
Nakano M, Matsui M, Tanaka K, et al. Numerical simulation on alumina reduction using laser plasma. Appl Plasma Sci, 2012, 20(1): 43
|
[71] |
Fukuji N, Matsui M, Yamagiwa Y. Evaluation of flow characteristics and alumina reduction efficiency in laser plasma wind tunnel flows by emission spectroscopy. Appl Plasma Sci, 2013, 21(1): 47
|
[72] |
Tanaka S, Yamada S, Soga R, et al. Alumina reduction by laser ablation using a continuous-wave CO2 laser toward lunar resource utilization. Vacuum, 2019, 167: 495 doi: 10.1016/j.vacuum.2018.07.054
|
[73] |
Tanaka S, Yamada S, Komurasaki K, et al. Effect of preheating in alumina reduction using laser ablation toward aluminum energy cycle for the lunar night // AIAA Propulsion and Energy 2019 Forum. Indianapolis, 2019: 4161
|