Citation: | ZENG Li, YUN Qin-bai, LU Qi-peng, CAO Wen-bin. Research progress of hydrophobically modified Halloysite nanotube-based composite materials[J]. Chinese Journal of Engineering, 2021, 43(6): 732-744. doi: 10.13374/j.issn2095-9389.2021.01.24.001 |
[1] |
Müller K, Bugnicourt E, Latorre M, et al. Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials, 2017, 7(4): 74 doi: 10.3390/nano7040074
|
[2] |
Paineau E, Krapf M E M, Amara M S, et al. A liquid-crystalline hexagonal columnar phase in highly-dilute suspensions of imogolite nanotubes. Nat Commun, 2016, 7: 10271 doi: 10.1038/ncomms10271
|
[3] |
Yu L, Wang H X, Zhang Y T, et al. Recent advances in halloysite nanotube derived composites for water treatment. Environ Sci Nano, 2016, 3(1): 28 doi: 10.1039/C5EN00149H
|
[4] |
Clegg F, Breen C, Muranyi P, et al. Antimicrobial, starch based barrier coatings prepared using mixed silver/sodium exchanged bentonite. Appl Clay Sci, 2019, 179: 105144
|
[5] |
Zhang J, Zhou C H, Petit S, et al. Hectorite: Synthesis, modification, assembly and applications. Appl Clay Sci, 2019, 177: 114 doi: 10.1016/j.clay.2019.05.001
|
[6] |
Lazzara G, Cavallaro G, Panchal A, et al. An assembly of organic-inorganic composites using halloysite clay nanotubes. Curr Opin Colloid Interface Sci, 2018, 35: 42 doi: 10.1016/j.cocis.2018.01.002
|
[7] |
Shamsi M H, Luqman M, Basarir F, et al. Plasma-modified halloysite nanocomposites: effect of plasma modification on the structure and dynamic mechanical properties of halloysite-polystyrene nanocomposites. Polym Int, 2010, 59(11): 1492 doi: 10.1002/pi.2946
|
[8] |
周述慧, 傳秀云. 埃洛石為模板合成中孔炭. 無機材料學報, 2014, 29(6):584
Zhou S H, Chuan X Y. Synthesis of mesoporous carbon using halloyiste as template. J Inorg Mater, 2014, 29(6): 584
|
[9] |
陳孟秋, 陳云, 舒杼, 等. 埃洛石原料無模板法制備高比表面積介孔氧化硅及其在亞甲基藍吸附中的應用. 無機材料學報, 2018, 33(12):1365 doi: 10.15541/jim20180160
Chen M Q, Chen Y, Shu Z, et al. Template-free synthesis of mesoporous silica with high specific surface area from natural halloysite and its application in methylene blue adsorption. J Inorg Mater, 2018, 33(12): 1365 doi: 10.15541/jim20180160
|
[10] |
Feng K Y, Hung G Y, Liu J S, et al. Fabrication of high performance superhydrophobic coatings by spray-coating of polysiloxane modified halloysite nanotubes. Chem Eng J, 2018, 331: 744 doi: 10.1016/j.cej.2017.09.023
|
[11] |
Cavallaro G, Lazzara G, Milioto S, et al. Halloysite nanotubes for cleaning, consolidation and protection. Chem Record, 2018, 18(7-8): 940 doi: 10.1002/tcr.201700099
|
[12] |
Torres-Luna J A, Moreno S, Molina R, et al. Comparison of the catalytic performance of Ni, Mo, and Ni–Mo impregnated on acid halloysite nanotubes in the n-decane hydroconversion. Energy Fuels, 2019, 33(12): 12647 doi: 10.1021/acs.energyfuels.9b02211
|
[13] |
Wu F, Pickett K, Panchal A, et al. Superhydrophobic polyurethane foam coated with polysiloxane-modified clay nanotubes for efficient and recyclable oil absorption. ACS Appl Mater Interfaces, 2019, 11(28): 25445 doi: 10.1021/acsami.9b08023
|
[14] |
Li Y G, Quan X J, Hu C Y, et al. Effective catalytic reduction of 4-nitrophenol to 4-aminophenol over etched halloysite nanotubes@α-Ni(OH)2. ACS Appl Energy Mater, 2020, 3(5): 4756 doi: 10.1021/acsaem.0c00382
|
[15] |
Li H L, Xu W N, Jia F F, et al. Correlation between surface charge and hydration on mineral surfaces in aqueous solutions: A critical review. Int J Miner Metall Mater, 2020, 27(7): 857 doi: 10.1007/s12613-020-2078-0
|
[16] |
Zheng Y, Wang L F, Zhong F L, et al. Site-oriented design of high-performance halloysite-supported palladium catalysts for methane combustion. Ind Eng Chem Res, 2020, 59(13): 5636 doi: 10.1021/acs.iecr.9b06679
|
[17] |
Lim K, Chow W S, Pung S Y. Enhancement of thermal stability and UV resistance of halloysite nanotubes using zinc oxide functionalization via a solvent-free approach. Int J Miner Metall Mater, 2019, 26(6): 787 doi: 10.1007/s12613-019-1781-1
|
[18] |
Cavallaro G, Milioto S, Konnova S, et al. Halloysite/keratin nanocomposite for human hair photoprotection coating. ACS Appl Mater Interfaces, 2020, 12(21): 24348 doi: 10.1021/acsami.0c05252
|
[19] |
Karami Z, Jazani O M, Navarchian A H, et al. Well-cured silicone/halloysite nanotubes nanocomposite coatings. Prog Org Coat, 2019, 129: 357 doi: 10.1016/j.porgcoat.2019.01.029
|
[20] |
Cavallaro G, Milioto S, Lazzara G. Halloysite nanotubes: interfacial properties and applications in cultural heritage. Langmuir, 2020, 36(14): 3677 doi: 10.1021/acs.langmuir.0c00573
|
[21] |
Zeng G Y, He Y, Zhan Y Q, et al. Preparation of a novel poly(vinylidene fluoride) ultrafiltration membrane by incorporation of 3-aminopropyltriethoxysilane-grafted halloysite nanotubes for oil/water separation. Ind Eng Chem Res, 2016, 55(6): 1760 doi: 10.1021/acs.iecr.5b04797
|
[22] |
Gao X B, Tang F, Jin Z X. Pt-Cu bimetallic nanoparticles loaded in the lumen of halloysite nanotubes. Langmuir, 2019, 35(45): 14651 doi: 10.1021/acs.langmuir.9b02645
|
[23] |
Lvov Y, Wang W C, Zhang L Q, et al. Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater, 2016, 28(6): 1227 doi: 10.1002/adma.201502341
|
[24] |
Yah W O, Takahara A, Lvov Y M. Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle. J Am Chem Soc, 2012, 134(3): 1853 doi: 10.1021/ja210258y
|
[25] |
Vergaro V, Abdullayev E, Lvov Y M, et al. Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromolecules, 2010, 11(3): 820 doi: 10.1021/bm9014446
|
[26] |
Hanif M, Jabbar F, Sharif S, et al. Halloysite nanotubes as a new drug-delivery system: a review. Clay Miner, 2016, 51(3): 469 doi: 10.1180/claymin.2016.051.3.03
|
[27] |
Owoseni O, Zhang Y H, Su Y, et al et al. Tuning the wettability of halloysite clay nanotubes by surface carbonization for optimal emulsion stabilization. Langmuir, 2015, 31(51): 13700 doi: 10.1021/acs.langmuir.5b03878
|
[28] |
Du M L, Guo B C, Jia D M. Newly emerging applications of halloysite nanotubes: a review. Polym Int, 2010, 59(5): 574 doi: 10.1002/pi.2754
|
[29] |
Massaro M, Colletti C G, Lazzara G, et al. Halloysite nanotubes as support for metal-based catalysts. J Mater Chem A, 2017, 5(26): 13276 doi: 10.1039/C7TA02996A
|
[30] |
Feng Y N, Zhou X P, Yang J H, et al. Encapsulation of ammonia borane in Pd/halloysite nanotubes for efficient thermal dehydrogenation. ACS Sustainable Chem Eng, 2020, 8(5): 2122 doi: 10.1021/acssuschemeng.9b04480
|
[31] |
Massaro M, Cavallaro G, Colletti C G, et al. Chemical modification of halloysite nanotubes for controlled loading and release. J Mater Chem B, 2018, 6(21): 3415 doi: 10.1039/C8TB00543E
|
[32] |
Li B C, Zhang J P. Durable and self-healing superamphiphobic coatings repellent even to hot liquids. Chem Commun, 2016, 52(13): 2744 doi: 10.1039/C5CC09951J
|
[33] |
Zhu Q, Li B C, Li S B, et al. Clay-based superamphiphobic coatings with low sliding angles for viscous liquids. J Colloid Interface Sci, 2019, 540: 228 doi: 10.1016/j.jcis.2019.01.024
|
[34] |
Darmanin T, Guittard F. Recent advances in the potential applications of bioinspired superhydrophobic materials. J Mater Chem A, 2014, 2(39): 16319 doi: 10.1039/C4TA02071E
|
[35] |
Fan H F, Guo Z G. Bioinspired surfaces with wettability: biomolecule adhesion behaviors. Biomater Sci, 2020, 8(6): 1502 doi: 10.1039/C9BM01729A
|
[36] |
Ghasemlou M, Daver F, Ivanova E P, et al. Bio-inspired sustainable and durable superhydrophobic materials: from nature to market. J Mater Chem A, 2019, 7(28): 16643 doi: 10.1039/C9TA05185F
|
[37] |
Jing X S, Guo Z G. Biomimetic super durable and stable surfaces with superhydrophobicity. J Mater Chem A, 2018, 6(35): 16731 doi: 10.1039/C8TA04994G
|
[38] |
Chenab K K, Sohrabi B, Rahmanzadeh A. Superhydrophobicity: advanced biological and biomedical applications. Biomater Sci, 2019, 7(8): 3110 doi: 10.1039/C9BM00558G
|
[39] |
Li L X, Li B C, Dong J, et al. Roles of silanes and silicones in forming superhydrophobic and superoleophobic materials. J Mater Chem A, 2016, 4(36): 13677 doi: 10.1039/C6TA05441B
|
[40] |
Li S H, Huang J Y, Chen Z, et al. A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. J Mater Chem A, 2017, 5(1): 31 doi: 10.1039/C6TA07984A
|
[41] |
董拴濤. 基于廢棄凹凸棒石超疏水/超雙疏涂層的制備及性能研究[學位論文]. 蘭州: 蘭州理工大學, 2018
Dong S T. The Fabrication and Property Research of Superhydrophobic and Superamphiphobic Coatings Based on Spent Bleaching Earth Attapulgite [Dissertation]. Lanzhou: Lanzhou University of Technology, 2018
|
[42] |
Chen F F, Zhu Y J, Xiong Z C, et al. Hydroxyapatite nanowire-based all-weather flexible electrically conductive paper with superhydrophobic and flame-retardant properties. ACS Appl Mater Interfaces, 2017, 9(45): 39534 doi: 10.1021/acsami.7b09484
|
[43] |
Chu F Q, Wu X M, Wang L L. Meltwater evolution during defrosting on superhydrophobic surfaces. ACS Appl Mater Interfaces, 2018, 10(1): 1415 doi: 10.1021/acsami.7b16087
|
[44] |
Han J T, Kim B K, Woo J S, et al. Bioinspired multifunctional superhydrophobic surfaces with carbon-nanotube-based conducting pastes by facile and scalable printing. ACS Appl Mater Interfaces, 2017, 9(8): 7780 doi: 10.1021/acsami.6b15292
|
[45] |
Liu Q, Chen D X, Kang Z X. One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy. ACS Appl Mater Interfaces, 2015, 7(3): 1859 doi: 10.1021/am507586u
|
[46] |
Murphy K R, McClintic W T, Lester K C, et al. Dynamic defrosting on scalable superhydrophobic surfaces. ACS Appl Mater Interfaces, 2017, 9(28): 24308 doi: 10.1021/acsami.7b05651
|
[47] |
Wang H P, He M J, Liu H, et al. One-step fabrication of robust superhydrophobic steel surfaces with mechanical durability, thermal stability, and anti-icing function. ACS Appl Mater Interfaces, 2019, 11(28): 25586 doi: 10.1021/acsami.9b06865
|
[48] |
Wen G, Guo Z G, Liu W M. Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications. Nanoscale, 2017, 9(10): 3338 doi: 10.1039/C7NR00096K
|
[49] |
Bhushan B, Jung Y C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog Mater Sci, 2011, 56(1): 1 doi: 10.1016/j.pmatsci.2010.04.003
|
[50] |
Gao X F, Jiang L. Water-repellent legs of water striders. Nature, 2004, 432(7013): 36 doi: 10.1038/432036a
|
[51] |
Zheng Y M, Gao X F, Jiang L. Directional adhesion of superhydrophobic butterfly wings. Soft Matter, 2007, 3(2): 178 doi: 10.1039/B612667G
|
[52] |
Gou X L, Guo Z G. Surface topographies of biomimetic superamphiphobic materials: design criteria, fabrication and performance. Adv Colloid Interface Sci, 2019, 269: 87 doi: 10.1016/j.cis.2019.04.007
|
[53] |
Jiang L, Tang Z G, Clinton R M, et al. Two-step process to create "roll-off" superamphiphobic paper surfaces. ACS Appl Mater Interfaces, 2017, 9(10): 9195 doi: 10.1021/acsami.7b00829
|
[54] |
Liu T L, Kim C J. Turning a surface superrepellent even to completely wetting liquids. Science, 2014, 346(6213): 1096 doi: 10.1126/science.1254787
|
[55] |
Zhou H, Wang H X, Niu H T, et al. A waterborne coating system for preparing robust, self-healing, superamphiphobic surfaces. Adv Funct Mater, 2017, 27(14): 1604261 doi: 10.1002/adfm.201604261
|
[56] |
Wang Y Y, Xue J, Wang Q J, et al. Verification of icephobic/anti-icing properties of a superhydrophobic surface. ACS Appl Mater Interfaces, 2013, 5(8): 3370 doi: 10.1021/am400429q
|
[57] |
翟廣坤, 李曙林, 陳素素, 等. 氟化改性硅樹脂制備的超疏水涂層防覆冰性能. 工程科學學報, 2018, 40(7):864
Zhai G K, Li S L, Chen S S, et al. Anti-icing performance of superhydrophobic coating prepared by modified fluorinated silicone. Chin J Eng, 2018, 40(7): 864
|
[58] |
Geng Z, He J H. An effective method to significantly enhance the robustness and adhesion-to-substrate of high transmittance superamphiphobic silica thin films. J Mater Chem A, 2014, 2(39): 16601 doi: 10.1039/C4TA03533J
|
[59] |
Yu S, Guo Z G, Liu W M. Biomimetic transparent and superhydrophobic coatings: from nature and beyond nature. Chem Commun, 2015, 51(10): 1775 doi: 10.1039/C4CC06868H
|
[60] |
Zhou Y Y, Ma Y B, Sun Y Y, et al. Robust superhydrophobic surface based on multiple hybrid coatings for application in corrosion protection. ACS Appl Mater Interfaces, 2019, 11(6): 6512 doi: 10.1021/acsami.8b19663
|
[61] |
Wen M, Peng C, Yao M, et al. Efficient gas adsorption using superamphiphobic porous monoliths as the under-liquid gas-conductive circuits. ACS Appl Mater Interfaces, 2019, 11(27): 24795 doi: 10.1021/acsami.9b07510
|
[62] |
Wen M, Zhong J, Zhao S J, et al. Robust transparent superamphiphobic coatings on non-fabric flat substrates with inorganic adhesive titania bonded silica. J Mater Chem A, 2017, 5(18): 8352 doi: 10.1039/C7TA01999H
|
[63] |
Guo X J, Xue C H, Jia S T, et al. Mechanically durable superamphiphobic surfaces via synergistic hydrophobization and fluorination. Chem Eng J, 2017, 320: 330 doi: 10.1016/j.cej.2017.03.058
|
[64] |
Liu H, Huang J Y, Li F Y, et al. Multifunctional superamphiphobic fabrics with asymmetric wettability for one-way fluid transport and templated patterning. Cellulose, 2017, 24(2): 1129 doi: 10.1007/s10570-016-1177-6
|
[65] |
Yin K, Dong X R, Zhang F, et al. Superamphiphobic miniature boat fabricated by laser micromachining. Appl Phys Lett, 2017, 110(12): 121909 doi: 10.1063/1.4979036
|
[66] |
Wen R F, Xu S S, Zhao D L, et al. Hierarchical superhydrophobic surfaces with micropatterned nanowire arrays for high-efficiency jumping droplet condensation. ACS Appl Mater Interfaces, 2017, 9(51): 44911 doi: 10.1021/acsami.7b14960
|
[67] |
Nagappan S, Ha C S. Emerging trends in superhydrophobic surface based magnetic materials: fabrications and their potential applications. J Mater Chem A, 2015, 3(7): 3224 doi: 10.1039/C4TA05078A
|
[68] |
Sahoo B N, Kandasubramanian B. Recent progress in fabrication and characterisation of hierarchical biomimetic superhydrophobic structures. RSC Adv, 2014, 4(42): 22053 doi: 10.1039/c4ra00506f
|
[69] |
Si Y F, Guo Z G. Superhydrophobic nanocoatings: from materials to fabrications and to applications. Nanoscale, 2015, 7(14): 5922 doi: 10.1039/C4NR07554D
|
[70] |
Chu Z L, Seeger S. Superamphiphobic surfaces. Chem Soc Rev, 2014, 43(8): 2784 doi: 10.1039/C3CS60415B
|
[71] |
Sun Y H, Guo Z G. A scalable, self-healing and hot liquid repelling superamphiphobic spray coating with remarkable mechanochemical robustness for real-life applications. Nanoscale, 2019, 11(29): 13853 doi: 10.1039/C9NR02893E
|
[72] |
Tie L, Li J, Guo Z G, et al. Controllable preparation of multiple superantiwetting surfaces: from dual to quadruple superlyophobicity. Chem Eng J, 2019, 369: 463 doi: 10.1016/j.cej.2019.03.110
|
[73] |
Wang H J, Zhang Z H, Wang Z K, et al. Multistimuli-responsive microstructured superamphiphobic surfaces with large-range, reversible switchable wettability for oil. ACS Appl Mater Interfaces, 2019, 11(31): 28478 doi: 10.1021/acsami.9b07941
|
[74] |
Zhang J P, Yu B, Wei Q Y, et al. Highly transparent superamphiphobic surfaces by elaborate microstructure regulation. J Colloid Interface Sci, 2019, 554: 250 doi: 10.1016/j.jcis.2019.06.106
|
[75] |
Arcudi F, Cavallaro G, Lazzara G, et al. Selective functionalization of halloysite cavity by click reaction: structured filler for enhancing mechanical properties of bionanocomposite films. J Phys Chem C, 2014, 118(27): 15095 doi: 10.1021/jp504388e
|
[76] |
Wu H, Watanabe H, Ma W, et al. Robust liquid marbles stabilized with surface-modified halloysite nanotubes. Langmuir, 2013, 29(48): 14971 doi: 10.1021/la4041858
|
[77] |
Liu M X, Jia Z X, Liu F, et al. Tailoring the wettability of polypropylene surfaces with halloysite nanotubes. J Colloid Interface Sci, 2010, 350(1): 186 doi: 10.1016/j.jcis.2010.06.047
|
[78] |
Jin Z L, Zhang Y Q, Wei S, et al. Molding of molecular sieve residues and their application in cleaning oily wastewater. Trans Tianjin Univ, 2019, 25(6): 631 doi: 10.1007/s12209-019-00201-2
|
[79] |
董龍浩, 張海軍, 張俊, 等. 碳納米管改性海泡石多孔陶瓷及其高效油水分離性能研究. 無機材料學報, 2020, 35(6):689
Dong L H, Zhang H J, Zhang J, et al. Carbon nanotube modified sepiolite porous ceramics for high-efficient oil/water separation. J Inorg Mater, 2020, 35(6): 689
|
[80] |
張穎, 張騫, 張瑞陽, 等. 超疏水復合海綿材料的制備及在油水分離的應用. 無機材料學報, 2020, 35(4):475
Zhang Y, Zhang Q, Zhang R Y, et al. Preparation of superhydrophobic composites sponge and its application in oil-water separation. J Inorg Mater, 2020, 35(4): 475
|
[81] |
Chen C L, Weng D, Mahmood A, et al. Separation mechanism and construction of surfaces with special wettability for oil/water separation. ACS Appl Mater Interfaces, 2019, 11(11): 11006 doi: 10.1021/acsami.9b01293
|
[82] |
Qu H M, Zhang J, Ma Y X, et al. Phase-selective gelators based on p-alkoxybenzoyl for oil spill recovery and dye removal. Trans Tianjin Univ, 2019, 25(6): 586 doi: 10.1007/s12209-019-00204-z
|
[83] |
Kota A K, Kwon G, Choi W, et al. Hygro-responsive membranes for effective oil-water separation. Nat Commun, 2012, 3: 1025 doi: 10.1038/ncomms2027
|
[84] |
Xue Z X, Wang S T, Lin L, et al. A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. Adv Mater, 2011, 23(37): 4270 doi: 10.1002/adma.201102616
|
[85] |
Gupta R K, Dunderdale G J, England M W, et al. Oil/water separation techniques: a review of recent progresses and future directions. J Mater Chem A, 2017, 5(31): 16025 doi: 10.1039/C7TA02070H
|
[86] |
Zhao X J, Luo Y Y, Tan P X, et al. Hydrophobically modified chitin/halloysite nanotubes composite sponges for high efficiency oil-water separation. Int J Biol Macromol, 2019, 132: 406 doi: 10.1016/j.ijbiomac.2019.03.219
|
[87] |
Guo D Y, Chen J H, Hou K, et al. A facile preparation of superhydrophobic halloysite-based meshes for efficient oil–water separation. Appl Clay Sci, 2018, 156: 195 doi: 10.1016/j.clay.2018.01.034
|
[88] |
Ma Q L, Cheng H F, Fane A G, et al. Recent development of advanced materials with special wettability for selective oil/water separation. Small, 2016, 12(16): 2186 doi: 10.1002/smll.201503685
|
[89] |
Aguzzi C, Cerezo P, Viseras C, et al. Use of clays as drug delivery systems: possibilities and limitations. Appl Clay Sci, 2007, 36(1-3): 22 doi: 10.1016/j.clay.2006.06.015
|
[90] |
Kumar-Krishnan S, Hernandez-Rangel A, Pal U, et al. Surface functionalized halloysite nanotubes decorated with silver nanoparticles for enzyme immobilization and biosensing. J Mater Chem B, 2016, 4(15): 2553 doi: 10.1039/C6TB00051G
|
[91] |
Goran J M, Mantilla S M, Stevenson K J. Influence of surface adsorption on the interfacial electron transfer of flavin adenine dinucleotide and glucose oxidase at carbon nanotube and nitrogen-doped carbon nanotube electrodes. Anal Chem, 2013, 85(3): 1571 doi: 10.1021/ac3028036
|
[92] |
Lun H L, Ouyang J, Yang H M. Natural halloysite nanotubes modified as an aspirin carrier. RSC Adv, 2014, 4(83): 44197 doi: 10.1039/C4RA09006C
|
[93] |
Lisuzzo L, Cavallaro G, Parisi F, et al. Colloidal stability of halloysite clay nanotubes. Ceram Int, 2019, 45(2): 2858 doi: 10.1016/j.ceramint.2018.07.289
|
[94] |
Riela S, Massaro M, Colletti C G, et al. Development and characterization of co-loaded curcumin/triazole-halloysite systems and evaluation of their potential anticancer activity. Int J Pharm, 2014, 475(1-2): 613 doi: 10.1016/j.ijpharm.2014.09.019
|
[95] |
Cavallaro G, Lazzara G, Milioto S, et al. Hydrophobically modified halloysite nanotubes as reverse micelles for water-in-oil emulsion. Langmuir, 2015, 31(27): 7472 doi: 10.1021/acs.langmuir.5b01181
|
[96] |
Li H, Zhu X H, Zhou H, et al. Functionalization of halloysite nanotubes by enlargement and hydrophobicity for sustained release of analgesic. Colloids Surf A, 2015, 487: 154 doi: 10.1016/j.colsurfa.2015.09.062
|