Citation: | ZHANG Wen-jing, LI Wen-xiu, LIU Ai-jun, WU Xing-kun, LI Jian-feng, LUO Tao. Intelligent auxiliary diagnosis of atrial septal defect based on view classification[J]. Chinese Journal of Engineering, 2021, 43(9): 1166-1173. doi: 10.13374/j.issn2095-9389.2021.01.14.007 |
[1] |
王新房, 謝明星. 超聲心動圖學. 5版. 北京: 人民衛生出版社, 2016
Wang X F, Xie M X. Textbook of Echocardiography. 5th Ed. Beijing: People’s Medical Publishing House, 2016
|
[2] |
黎潔雯. 先天性心臟病的流行趨勢及流行病學分析. 心血管康復醫學雜志, 2017, 26(1):60 doi: 10.3969/j.issn.1008-0074.2017.01.17
Li J W. Trend and epidemiological analysis of congenital heart disease. Chin J Cardiovasc Rehabilitation Med, 2017, 26(1): 60 doi: 10.3969/j.issn.1008-0074.2017.01.17
|
[3] |
張麗媛, 喬玉紅, 寧淑范, 等. 房間隔缺損39例超聲診斷分析. 中國實用醫藥, 2009, 4(14):95 doi: 10.3969/j.issn.1673-7555.2009.14.067
Zhang L Y, Qiao Y H, Ning S F, et al. Analysis of ultrasonic diagnosis of 39 atrial septal defects. China Pract Med, 2009, 4(14): 95 doi: 10.3969/j.issn.1673-7555.2009.14.067
|
[4] |
陶攀, 付忠良, 朱鍇, 等. 基于深度學習的超聲心動圖切面識別方法. 計算機應用, 2017, 37(5):1434 doi: 10.11772/j.issn.1001-9081.2017.05.1434
Tao P, Fu Z L, Zhu K, et al. Echocardiogram view recognition using deep convolutional neural network. J Comput Appl, 2017, 37(5): 1434 doi: 10.11772/j.issn.1001-9081.2017.05.1434
|
[5] |
Madani A, Arnaout R, Mofrad M, et al. Fast and accurate view classification of echocardiograms using deep learning. Npj Digit Med, 2018, 1(1): 6 doi: 10.1038/s41746-017-0013-1
|
[6] |
Madani A, Ong J R, Tibrewal A, et al. Deep echocardiography: Data-efficient supervised and semi-supervised deep learning towards automated diagnosis of cardiac disease. Npj Digit Med, 2018, 1(1): 59 doi: 10.1038/s41746-017-0008-y
|
[7] |
Teng L, Fu Z L, Yao Y. Interactive translation in echocardiography training system with enhanced cycle-GAN. IEEE Access, 2020, 8: 106147 doi: 10.1109/ACCESS.2020.3000666
|
[8] |
Teng L, Fu Z L, Ma Q, et al. Interactive echocardiography translation using few-shot GAN transfer learning. Comput Math Methods Med, 2020, 2020: 1487035
|
[9] |
Ghorbani A, Ouyang D, Abid A, et al. Deep learning interpretation of echocardiograms. Npj Digit Med, 2020, 3(1): 1 doi: 10.1038/s41746-019-0211-0
|
[10] |
Veni G, Moradi M, Bulu H K, et al. Echocardiography segmentation based on a shape-guided deformable model driven by a fully convolutional network prior // 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). Washington, 2018: 898
|
[11] |
Leclerc S, Smistad E, Pedrosa J, et al. Deep learning for segmentation using an open large-scale dataset in 2D echocardiography. IEEE Trans Med Imaging, 2019, 38(9): 2198 doi: 10.1109/TMI.2019.2900516
|
[12] |
Li Y W, Ho C P, Toulemonde M, et al. Fully automatic myocardial segmentation of contrast echocardiography sequence using random forests guided by shape model. IEEE Trans Med Imaging, 2017, 37(5): 1081
|
[13] |
Lu Y, Fu X H, Li X Q, et al. Cardiac chamber segmentation using deep learning on magnetic resonance images from patients before and after atrial septal occlusion surgery // 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Montreal, 2020: 1211
|
[14] |
Zyuzin V, Mukhtarov A, Neustroev D, et al. Segmentation of 2D echocardiography images using residual blocks in U-net architectures // 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). Yekaterinburg, 2020: 499
|
[15] |
Smistad E, ?stvik A, Salte I M, et al. Fully automatic real-time ejection fraction and MAPSE measurements in 2D echocardiography using deep neural networks // 2018 IEEE International Ultrasonics Symposium (IUS). Kobe, 2018: 1
|
[16] |
Davis A, Billick K, Horton K, et al. Artificial intelligence and echocardiography: A primer for cardiac sonographers. J Am Soc Echocardiogr, 2020, 33(9): 1061 doi: 10.1016/j.echo.2020.04.025
|
[17] |
Huang Q, Zhang F, Li X. Machine learning in ultrasound computer-aided diagnostic systems: A survey. Biomed Res Int, 2018, 2018: 5137904
|
[18] |
Wang X, Jia Y G, Sevenster M, et al. Representation learning of finding codes in structured echocardiogram reporting // 2018 IEEE International Conference on Healthcare Informatics (ICHI). New York, 2018: 429
|
[19] |
Liao Z B, Girgis H, Abdi A, et al. On modelling label uncertainty in deep neural networks: Automatic estimation of intra- observer variability in 2D echocardiography quality assessment. IEEE Trans Med Imaging, 2020, 39(6): 1868 doi: 10.1109/TMI.2019.2959209
|
[20] |
Singh Y, Roehr C C, Tissot C, et al. Education, training, and accreditation of neonatologist performed echocardiography in Europe—framework for practice. Pediatr Res, 2018, 84(1): 13
|
[21] |
Mishra D, Chaudhury S, Sarkar M, et al. Ultrasound image enhancement using structure oriented adversarial network. IEEE Signal Process Lett, 2018, 25(9): 1349 doi: 10.1109/LSP.2018.2858147
|
[22] |
Sable A H, Jondhale K C. Modified double bilateral filter for sharpness enhancement and noise removal // 2010 International Conference on Advances in Computer Engineering. Bangalore, 2010: 295
|
[23] |
Patil P D, Kumbhar A D. Bilateral filter for image denoising // 2015 International Conference on Green Computing and Internet of Things (ICGCIoT). Greater Noida, 2015: 299
|
[24] |
Huang G, Liu Z, van der Maaten L, et al. Densely connected convolutional networks // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2017: 4700
|
[25] |
李江昀, 趙義凱, 薛卓爾, 等. 深度神經網絡模型壓縮綜述. 工程科學學報, 2019, 41(10):1229
Li J Y, Zhao Y K, Xue Z E, et al. A survey of model compression for deep neural networks. Chin J Eng, 2019, 41(10): 1229
|