Citation: | LI Yang, CHANG Jia-yue, WANG Yu-yang. MKL-SVM algorithm for pulmonary nodule recognition based on swarm intelligence optimization[J]. Chinese Journal of Engineering, 2021, 43(9): 1157-1165. doi: 10.13374/j.issn2095-9389.2021.01.14.004 |
[1] |
Shen W, Zhou M, Yang F, et al. Multi-crop Convolutional Neural Networks for lung nodule malignancy suspiciousness classification. Pattern Recognit, 2017, 61: 663 doi: 10.1016/j.patcog.2016.05.029
|
[2] |
Ferlay J, Colombet M, Soerjomataram I, et al. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer, 2018, 103: 356 doi: 10.1016/j.ejca.2018.07.005
|
[3] |
Siegel R L, Miller K D, Jemal A. Cancer statistics, 2018. CA:A Cancer J Clin, 2018, 68(1): 7 doi: 10.3322/caac.21442
|
[4] |
Li Y, Zhu Z, Hou A, et al. Pulmonary nodule recognition based on multiple kernel learning support vector machine-PSO. Comput Math Methods Med, 2018, 2018: 1461470
|
[5] |
Renita D B, Christopher C S. Novel real time content based medical image retrieval scheme with GWO-SVM. Multimed Tools Appl, 2020, 79(23-24): 17227 doi: 10.1007/s11042-019-07777-w
|
[6] |
Jia D Y, Li Z Y, Zhang C W. Detection of cervical cancer cells based on strong feature CNN-SVM network. Neurocomputing, 2020, 411: 112 doi: 10.1016/j.neucom.2020.06.006
|
[7] |
Shankar K, Lakshmanaprabu S K, Gupta D, et al. Optimal feature-based multi-kernel SVM approach for thyroid disease classification. J Supercomput, 2020, 76(2): 1128 doi: 10.1007/s11227-018-2469-4
|
[8] |
Peng Z C, Hu Q H, Dang J W. Multi-kernel SVM based depression recognition using social media data. Int J Mach Learn Cybern, 2019, 10(1): 43 doi: 10.1007/s13042-017-0697-1
|
[9] |
Valdez F. A review of optimization swarm intelligence-inspired algorithms with type-2 fuzzy logic parameter adaptation. Soft Comput, 2020, 24(1): 215 doi: 10.1007/s00500-019-04290-y
|
[10] |
Zhou T, Lu H L, Hu F Y, et al. A model of high-dimensional feature reduction based on variable precision rough set and genetic algorithm in medical image. Math Probl Eng, 2020, 2020: 1
|
[11] |
Gao Y K, Xie L B, Zhang Z D, et al. Twin support vector machine based on improved artificial fish swarm algorithm with application to flame recognition. Appl Intell, 2020, 50(8): 2312 doi: 10.1007/s10489-020-01676-6
|
[12] |
Litjens G, Kooi T, Bejnordi B E, et al. A survey on deep learning in medical image analysis. Med Image Anal, 2017, 42: 60 doi: 10.1016/j.media.2017.07.005
|
[13] |
Zhang B H, Qi S L, Monkam P, et al. Ensemble learners of multiple deep CNNs for pulmonary nodules classification using CT images. IEEE Access, 2019, 7: 110358 doi: 10.1109/ACCESS.2019.2933670
|
[14] |
Mastouri R, Khlifa N, Neji H, et al. A bilinear convolutional neural network for lung nodules classification on CT images. Int J Comput Assist Radiol Surg, 2021, 16(1): 91 doi: 10.1007/s11548-020-02283-z
|
[15] |
?zyurt F, Sert E, Avci E, et al. Brain tumor detection based on Convolutional Neural Network with neutrosophic expert maximum fuzzy sure entropy. Measurement, 2019, 147: 106830 doi: 10.1016/j.measurement.2019.07.058
|
[16] |
Hao P Y. Dual possibilistic regression analysis using support vector networks. Fuzzy Sets Syst, 2020, 387: 1 doi: 10.1016/j.fss.2019.03.012
|
[17] |
Yan B L, Zhao Z, Zhou Y C, et al. A particle swarm optimization algorithm with random learning mechanism and Levy flight for optimization of atomic clusters. Comput Phys Commun, 2017, 219: 79 doi: 10.1016/j.cpc.2017.05.009
|
[18] |
Wu Z, Zhang S, Wang T. A cooperative particle swarm optimization with constriction factor based on simulated annealing. Computing, 2018, 100(8): 861 doi: 10.1007/s00607-018-0625-6
|
[19] |
Freitas D, Lopes L G, Morgado-Dias F. Particle swarm optimisation: A historical review up to the current developments. Entropy, 2020, 22(3): 362 doi: 10.3390/e22030362
|
[20] |
Choudhary A, Kumar M, Gupta M K, et al. Mathematical modeling and intelligent optimization of submerged arc welding process parameters using hybrid PSO-GA evolutionary algorithms. Neural Comput Appl, 2020, 32(10): 5761 doi: 10.1007/s00521-019-04404-5
|
[21] |
Koessler E, Almomani A. Hybrid particle swarm optimization and pattern search algorithm. Optim Eng, 2020: 1
|
[22] |
Setio A A A, Traverso A, Bel T, et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge. Med Image Anal, 2017, 42: 1 doi: 10.1016/j.media.2017.06.015
|
[23] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition//Proceedings of 2015 International Conference on Learning Representations. California, 2015: 1
|
[24] |
Zhao X, Qi S, Zhang B, et al. Deep CNN models for pulmonary nodule classification: Model modification, model integration, and transfer learning. J Xray Sci Technol, 2019, 27(4): 615
|
[25] |
Masood A, Sheng B, Yang P, et al. Automated decision support system for lung cancer detection and classification via enhanced RFCN with multilayer fusion RPN. IEEE Trans Ind Inform, 2020, 16(12): 7791 doi: 10.1109/TII.2020.2972918
|