Citation: | XU Li, WU Yun-xiao, XIAO Bing, XU Zhi-fei, ZHANG Yuan. One-dimensional convolutional neural network for children’s sleep staging[J]. Chinese Journal of Engineering, 2021, 43(9): 1253-1260. doi: 10.13374/j.issn2095-9389.2021.01.13.011 |
[1] |
Halbower A C, Degaonkar M, Barker P B, et al. Childhood obstructive sleep apnea associates with neuropsychological deficits and neuronal brain injury. PLoS Med, 2006, 3(8): e301 doi: 10.1371/journal.pmed.0030301
|
[2] |
Matricciani L, Paquet C, Galland B, et al. Children's sleep and health: A meta-review. Sleep Med Rev, 2019, 46: 136 doi: 10.1016/j.smrv.2019.04.011
|
[3] |
Cardoso T S G, Pompéia S, Miranda M C. Cognitive and behavioral effects of obstructive sleep apnea syndrome in children: A systematic literature review. Sleep Med, 2018, 46: 46 doi: 10.1016/j.sleep.2017.12.020
|
[4] |
Marcus C L, Moore R H, Rosen C L, et al. A randomized trial of adenotonsillectomy for childhood sleep apnea. N Engl J Med, 2013, 368(25): 2366 doi: 10.1056/NEJMoa1215881
|
[5] |
Tabone L, Khirani S, Amaddeo A, et al. Cerebral oxygenation in children with sleep-disordered breathing. Paediatr Respir Rev, 2020, 34: 18
|
[6] |
Rundo J V, Downey III R. Polysomnography. Handb Clin Neurol, 2019, 160: 381
|
[7] |
Rechtschaffen A, Kales A. A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects. Washington, DC: U.S. Government Printing Office, 1968
|
[8] |
李延軍, 宏峰, 嚴洪, 等. 在軌睡眠質量評價的研究進展. 航天醫學與醫學工程, 2012, 25(6):458
Li Y J, Hong F, Yan H, et al. Research progress in sleep quality evaluation on-orbit. Space Med Med Eng, 2012, 25(6): 458
|
[9] |
Singh J, Badr M S, Diebert W, et al. American academy of sleep medicine (AASM) position paper for the use of telemedicine for the diagnosis and treatment of sleep disorders. J Clin Sleep Med, 2015, 11(10): 1187 doi: 10.5664/jcsm.5098
|
[10] |
Newson J J, Thiagarajan T C. EEG frequency bands in psychiatric disorders: A review of resting state studies. Front Hum Neurosci, 2018, 12: 521 doi: 10.3389/fnins.2018.00521
|
[11] |
Berry RB, Albertario CL, Harding SM, et al. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications (Version 2.5). USA: American Academy of Sleep Medicine, 2018
|
[12] |
Dong H, Supratak A, Pan W, et al. Mixed neural network approach for temporal sleep stage classification. IEEE Trans Neural Syst Rehabilitation Eng, 2018, 26(2): 324 doi: 10.1109/TNSRE.2017.2733220
|
[13] |
Supratak A, Dong H, Wu C, et al. DeepSleepNet: A model for automatic sleep stage scoring based on raw single-channel EEG. IEEE Trans Neural Syst Rehabilitation Eng, 2017, 25(11): 1998 doi: 10.1109/TNSRE.2017.2721116
|
[14] |
Phan H, Andreotti F, Cooray N, et al. SeqSleepNet: end-to-end hierarchical recurrent neural network for sequence-to-sequence automatic sleep staging. IEEE Trans Neural Syst Rehabilitation Eng, 2019, 27(3): 400 doi: 10.1109/TNSRE.2019.2896659
|
[15] |
Mousavi S, Afghah F, Acharya U R. SleepEEGNet: Automated sleep stage scoring with sequence to sequence deep learning approach. PLoS One, 2019, 14(5): e0216456 doi: 10.1371/journal.pone.0216456
|
[16] |
Neng W P, Lu J, Xu L. CCRRSleepNet: A hybrid relational inductive biases network for automatic sleep stage classification on raw single-channel EEG. Brain Sci, 2021, 11(4): 456 doi: 10.3390/brainsci11040456
|
[17] |
Dehkordi P, Garde A, Karlen W, et al. Sleep stage classification in children using photoplethysmogram pulse rate variability // Computing in Cardiology 2014. Cambridge, 2014: 297
|
[18] |
Gu J X, Wang Z H, Kuen J, et al. Recent advances in convolutional neural networks. Pattern Recognit, 2018, 77: 354 doi: 10.1016/j.patcog.2017.10.013
|
[19] |
Feyissa AM, Tatum WO. Adult EEG. Handb Clin Neurol, 2019, 160: 103
|
[20] |
Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional neural networks //NIPS'12: Proceedings of the 25th International Conference on Neural Information Processing Systems. New York, 2012: 1097
|
[21] |
Kalayeh M M, Shah M. Training faster by separating modes of variation in batch-normalized models. IEEE Trans Pattern Anal Mach Intell, 2020, 42(6): 1483 doi: 10.1109/TPAMI.2019.2895781
|
[22] |
He K M, Zhang X Y, Ren S Q, et al. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification // 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, 2015: 1026
|
[23] |
Kingma D P, Ba J. Adam: A method for stochastic optimization // International Conference on Learning Representations. San Diego, 2015: 13
|
[24] |
Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: A simple way to prevent neural networks from overfitting. J Mach Learn Res, 2014, 15: 1929
|