<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
XU Yue-fan, XIAO Wen-dong, CAO Zheng-tao. Ensemble extreme learning machine approach for heartbeat classification by fusing 1d convolutional and handcrafted features[J]. Chinese Journal of Engineering, 2021, 43(9): 1224-1232. doi: 10.13374/j.issn2095-9389.2021.01.12.005
Citation: XU Yue-fan, XIAO Wen-dong, CAO Zheng-tao. Ensemble extreme learning machine approach for heartbeat classification by fusing 1d convolutional and handcrafted features[J]. Chinese Journal of Engineering, 2021, 43(9): 1224-1232. doi: 10.13374/j.issn2095-9389.2021.01.12.005

Ensemble extreme learning machine approach for heartbeat classification by fusing 1d convolutional and handcrafted features

doi: 10.13374/j.issn2095-9389.2021.01.12.005
More Information
  • Corresponding author: E-mail: czhengtao@126.com
  • Received Date: 2021-01-12
    Available Online: 2021-03-10
  • Publish Date: 2021-09-18
  • Arrhythmia is a common cardiovascular disease whose occurrence is mainly related to two factors: cardiac pacing and conduction. Some severe arrhythmias can even threaten human life. An electrocardiogram (ECG) records the changes in electrical activity generated during each cardiac cycle of the heart, which can reflect the human cardiac health status and help diagnose arrhythmias. However, because of the brevity of conventional ECGs, arrhythmias, which occasionally occur in daily life, cannot be detected easily. Automatic ECG analysis-based long-term heartbeat monitoring is of great significance for the effective detection of accidental arrhythmias and then for taking indispensable measures to prevent cardiovascular diseases in time. An ensemble extreme learning machine (ELM) approach for heartbeat classification that fuses handcrafted features and deep features was proposed. The manually extracted features clearly characterize the heartbeat signal, where RR interval features reflect the time-domain characteristic, and the wavelet coefficient features reflect the time–frequency characteristic. A 1D convolutional neural network (1D CNN) was designed to automatically extract deep features for heartbeat signals. These features were fused by an ELM for heartbeat classification. Because of the instability caused by the random assignment of ELM hidden layer parameters, the bagging ensemble strategy was introduced to integrate multiple ELMs to achieve stable classification performance and good generalization ability. The proposed approach was validated on the MIT-BIH arrhythmia public dataset. The classification accuracy reaches 99.02%, and the experimental results show that the performance of the proposed approach with fused features is better than those with only deep features and only handcrafted features.

     

  • loading
  • [1]
    Thaler M S. The Only EKG Book You’ll Ever Need. 9th Ed. Philadelphia, PA: Lippincott Williams & Wilkins, 2017[2] Gawlowska J, Wranicz J K, Norman J. “Jeff ” Holter (1914—1983). Cardiol J, 2009, 16(4): 386
    [2]
    Chazal P d, Reilly R B. A patient-adapting heartbeat classifier using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng, 2006, 53(12): 2535 doi: 10.1109/TBME.2006.883802
    [3]
    Mondéjar-Guerra V, Novo J, Rouco J, et al. Heartbeat classification fusing temporal and morphological information of ECGs via ensemble of classifiers. Biomed Signal Process Control, 2019, 47: 41 doi: 10.1016/j.bspc.2018.08.007
    [4]
    Chazal P d, O'Dwyer M, Reilly R B. Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng, 2004, 51(7): 1196 doi: 10.1109/TBME.2004.827359
    [5]
    Tuncer T, Dogan S, P?awiak P, et al. Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals. Knowl Based Syst, 2019, 186: 104923 doi: 10.1016/j.knosys.2019.104923
    [6]
    Sahoo S, Kanungo B, Behera S, et al. Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities. Measurement, 2017, 108: 55 doi: 10.1016/j.measurement.2017.05.022
    [7]
    Afkhami R G, Azarnia G, Tinati M A. Cardiac arrhythmia classification using statistical and mixture modeling features of ECG signals. Pattern Recognit Lett, 2016, 70: 45 doi: 10.1016/j.patrec.2015.11.018
    [8]
    Marinho L B, Nascimento N M M, Souza J W M, et al. A novel electrocardiogram feature extraction approach for cardiac arrhythmia classification. Future Gener Comput Syst, 2019, 97: 564 doi: 10.1016/j.future.2019.03.025
    [9]
    Ye C, Vijaya Kumar B V K, Coimbra M T. Heartbeat classification using morphological and dynamic features of ECG signals. IEEE Trans Biomed Eng, 2012, 59(10): 2930 doi: 10.1109/TBME.2012.2213253
    [10]
    Castillo O, Melin P, Ramírez E, et al. Hybrid intelligent system for cardiac arrhythmia classification with Fuzzy K-Nearest Neighbors and neural networks combined with a fuzzy system. Expert Syst Appl, 2012, 39(3): 2947 doi: 10.1016/j.eswa.2011.08.156
    [11]
    Girshick R. Fast R?CNN // 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, 2015: 1440
    [12]
    Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2017: 2261
    [13]
    He K M, Zhang X Y, Ren S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intell, 2015, 37(9): 1904 doi: 10.1109/TPAMI.2015.2389824
    [14]
    Szegedy C, Liu W, Jia Y Q, et al. Going deeper with convolutions // 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, 2015: 1
    [15]
    Schroff F, Kalenichenko D, Philbin J. FaceNet: A unified embedding for face recognition and clustering // 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, 2015: 815
    [16]
    Ding C X, Tao D C. Trunk-branch ensemble convolutional neural networks for video-based face recognition. IEEE Trans Pattern Anal Mach Intell, 2018, 40(4): 1002 doi: 10.1109/TPAMI.2017.2700390
    [17]
    He R, Wu X, Sun Z N, et al. Wasserstein CNN: Learning invariant features for NIR-VIS face recognition. IEEE Trans Pattern Anal Mach Intell, 2019, 41(7): 1761 doi: 10.1109/TPAMI.2018.2842770
    [18]
    Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell, 2017, 39(4): 640 doi: 10.1109/TPAMI.2016.2572683
    [19]
    LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proc IEEE, 1998, 86(11): 2278 doi: 10.1109/5.726791
    [20]
    Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: Theory and applications. Neurocomputing, 2006, 70(1-3): 489 doi: 10.1016/j.neucom.2005.12.126
    [21]
    Huang G B, Chen L, Siew C K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw, 2006, 17(4): 879 doi: 10.1109/TNN.2006.875977
    [22]
    Anthimopoulos M, Christodoulidis S, Ebner L, et al. Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging, 2016, 35(5): 1207 doi: 10.1109/TMI.2016.2535865
    [23]
    李江昀, 趙義凱, 薛卓爾, 等. 深度神經網絡模型壓縮綜述. 工程科學學報, 2019, 41(10):1229

    Li J Y, Zhao Y K, Xue Z E, et al. A survey of model compression for deep neural networks. Chin J Eng, 2019, 41(10): 1229
    [24]
    Ji S W, Xu W, Yang M, et al. 3D convolutional neural networks for human action recognition. IEEE Trans Pattern Anal Mach Intell, 2013, 35(1): 221 doi: 10.1109/TPAMI.2012.59
    [25]
    Bartlett P L. The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network. IEEE Trans Inf Theory, 1998, 44(2): 525 doi: 10.1109/18.661502
    [26]
    PhysioNet. MIT−BIH Arrhythmias Database [J/OL]. PhysioNet Online (2020-04-15) [2021-01-12] https://physionet.org/files/mitdb/1.0.0
    [27]
    Moody G B, Mark R G. The impact of the mit-bih arrhythmia database. IEEE Eng Med Biol Mag, 2001, 20(3): 45 doi: 10.1109/51.932724
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article views (932) PDF downloads(104) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频