<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
ZHANG Yong-jun, LI Xin-peng, WANG Jiu-hua, LIU Jing, HAN Jing-Tao. Metallographic analysis and kinetic equation of the graphitization process of graphitized steel[J]. Chinese Journal of Engineering, 2022, 44(2): 228-234. doi: 10.13374/j.issn2095-9389.2021.01.10.004
Citation: ZHANG Yong-jun, LI Xin-peng, WANG Jiu-hua, LIU Jing, HAN Jing-Tao. Metallographic analysis and kinetic equation of the graphitization process of graphitized steel[J]. Chinese Journal of Engineering, 2022, 44(2): 228-234. doi: 10.13374/j.issn2095-9389.2021.01.10.004

Metallographic analysis and kinetic equation of the graphitization process of graphitized steel

doi: 10.13374/j.issn2095-9389.2021.01.10.004
More Information
  • Corresponding author: E-mail: zhangyj@mater.ustb.edu.cn
  • Received Date: 2021-01-10
    Available Online: 2021-06-18
  • Publish Date: 2022-02-15
  • Graphitized steel can have good machinability and formability, or high strength through controlling microstructure. The graphitization process is formation of graphite particles in graphitized steel, which is key to control the microstructure and properties of the steel. In this paper, the quenched high carbon steel with 0.66% carbon (mass fraction) was graphitized at 650, 680, and 710℃, respectively. The microstructure formed during the graphitization process was analyzed by a field emission scanning electron microscope, electron probe microanalysis, X-ray diffraction, and a transmission electron microscope. According to the dynamic theory of phase transformation, the kinetic curve of the graphitization process was drawn, and the corresponding kinetic equation was established. The results show that in the graphitization process, the quenched martensite is first transformed to the stable state of precipitation carbide. When the carbide is cementite Fe3C, the precipitation rate of graphite particles increases significantly. The acicular α-Fe in the matrix recrystallizes, and is gradually replaced by equiaxed ferrite. With prolonged graphitization time, the carbon content in ferrite decreases gradually; that is, it changes from a supersaturated state to a stable state. The carbon content increases to the peak value in graphite particles, whereas that of Fe decreases to the valley value. These changes show that the decomposed carbon of cementite, Fe3C, diffuses into the graphite core, whereas Fe diffuses from the graphite core, and then graphite particles are formed. Additionally, when steel is graphitized, the curve of graphite particle area fraction with time is an S shape; that is, the dynamic process of the tested steel is in accordance with the JMAK (Johnson-Mehl-Avrami-Kolmogorov) equation, and the value of n in the equation is between 1.5 and 1.7.

     

  • loading
  • [1]
    Inam A, Edmonds D. Machinability of an experimental graphitised carbon steel. Mater Sci Forum, 2016, 879: 477 doi: 10.4028/www.scientific.net/MSF.879.477
    [2]
    Inam A, Brydson R, Edmonds D V. Effect of starting microstructure upon the nucleation sites and distribution of graphite particles during a graphitising anneal of an experimental medium-carbon machining steel. Mater Charact, 2015, 106: 86 doi: 10.1016/j.matchar.2015.05.014
    [3]
    He K, Daniels H R, Brown A, et al. An electron microscopic study of spheroidal graphite nodules formed in a medium-carbon steel by annealing. Acta Mater, 2007, 55(9): 2919 doi: 10.1016/j.actamat.2006.12.029
    [4]
    Katayama S, Toda M. Machinability of medium carbon graphitic steel. J Mater Process Technol, 1996, 62(4): 358 doi: 10.1016/S0924-0136(96)02435-1
    [5]
    Iwamoto T, Murakami T. Bar and wire steels for gears and valves of automobiles-eco-friendly free cutting steel without lead addition. Jfe Giho, 2004, 4: 74
    [6]
    Iwamoto T, Hoshino T, Matsuzaki A, et al. A new developed unleaded free cutting steel which has both of high fatigue strengh and excellent machinability using graphitization of carbon in the steel. Material Japan, 2003, 42(2): 163 doi: 10.2320/materia.42.163
    [7]
    Mokhtari A, Rashidi A M. The transformation of CK45 steel to the dual phase graphite steel and the study of its microstructure. Indian J Fund Appl Life Sci, 2015, 5(S2): 1749
    [8]
    Rounaghi S A, Kiani-Rashid A R. A study on graphitisation acceleration during annealing of martensitic hypereutectoid steel. Phase Transitions, 2011, 84(11-12): 981 doi: 10.1080/01411594.2011.563153
    [9]
    Inam A, He K J, Edmonds D. Graphitisation: A potential new route to free-machining steels // Proceedings of HSLA Steels 2015 and Micro alloying 2015 and OES 2015. Hangzhou, 2016: 817
    [10]
    Kim Y J, Bae S W, Lim N S, et al. Graphitization behavior of medium-carbon high-silicon steel and its dependence on temperature and grain size. Mater Sci Eng A, 2020, 785: 139392 doi: 10.1016/j.msea.2020.139392
    [11]
    Gao J X, Wei B Q, Li D D, et al. Nucleation and growth characteristics of graphite spheroids in bainite during graphitization annealing of a medium carbon steel. Mater Charact, 2016, 118: 1 doi: 10.1016/j.matchar.2016.05.003
    [12]
    陳宣宇. 中碳鋼的石墨化工藝研究[學位論文]. 昆明: 昆明理工大學, 2016

    Chen X Y. Study on Graphitization Process of Medium Carbon Steel [Dissertation]. Kunming: Kunming University of Science and Technology, 2016
    [13]
    陳宣宇, 曹建春, 周曉龍. 熱處理對石墨易切削鋼顯微組織的影響. 熱加工工藝, 2017, 46(4):234

    Chen X Y, Cao J C, Zhou X L. Effect of heat treatment on microstructure of graphitized free-cutting steel. Hot Work Technol, 2017, 46(4): 234
    [14]
    張政, 李瑞武, 馬柯鑫, 等. 中溫形變對45鋼石墨化的影響. 遼寧科技大學學報, 2018, 41(5):351

    Zhang Z, Li R W, Ma K X, et al. Effect of medium temperature deformation on graphitization of 45 steel. J Univ Sci Technol Liaoning, 2018, 41(5): 351
    [15]
    張永軍. 亞共析石墨化易切削鋼的研究與開發[博士后研究工作報告]. 北京: 北京科技大學, 首鋼技術研究院, 2006

    Zhang Y J. Research and Development of Hypoeutectoid Graphitized Free Cutting Steel [Dissertation]. Beijing: University of Science and Technology Beijing, Shougang Research Institute of Technology, 2006
    [16]
    張永軍, 韓靜濤, 王全禮, 等. 亞共析石墨化易切削鋼的開發. 鋼鐵, 2008, 43(8):73 doi: 10.3321/j.issn:0449-749X.2008.08.017

    Zhang Y J, Han J T, Wang Q L, et al. Research and development of graphitized hypoeutectoid free cutting steel. Iron Steel, 2008, 43(8): 73 doi: 10.3321/j.issn:0449-749X.2008.08.017
    [17]
    Zhang Y J, Han J T. Microstructure and properties of graphitized free-cutting steel. Russ Metall (Met), 2018, 2018(3): 248 doi: 10.1134/S0036029518030126
    [18]
    張永軍, 張鵬程, 張波, 等. 石墨化碳素鋼室溫壓縮過程中的不均勻變形行為. 工程科學學報, 2019, 41(8):1037

    Zhang Y J, Zhang P C, Zhang B, et al. Inhomogeneous deformation behavior in compressive deformation process at room temperature of graphitized carbon steel. Chin J Eng, 2019, 41(8): 1037
    [19]
    張永軍, 王九花, 李新鵬, 等. 石墨化鋼壓縮溫變形行為的試驗研究. 哈爾濱工程大學學報, 2021, 42(3):433

    Zhang Y J, Wang J H, Li X P, et al. Experimental research on the deformation behavior of graphitized steel under medium temperature compression. J Harbin Eng Univ, 2021, 42(3): 433
    [20]
    尹云洋, 方芳, 嚴翔, 等. 環保石墨易切削鋼的組織及性能. 材料熱處理學報, 2013, 34(4):133

    Yin Y Y, Fang F, Yan X, et al. Microstructure and properties of environmental graphitized free-cutting steel. Trans Mater Heat Treat, 2013, 34(4): 133
    [21]
    Yin Y Y, Fang F, Luo G H, et al. Microstructure evolution of environmental graphitized hypoeutectoid free cutting steel. Appl Mech Mater, 2014, 633-634: 192 doi: 10.4028/www.scientific.net/AMM.633-634.192
    [22]
    佳貝. 加工性能優良的高碳冷軋薄板. 鋼鐵, 1993(9):75)

    Jia B. High carbon cold rolled sheet with excellent formability. Iron Steel, 1993(9): 75
    [23]
    Fukui K, Mizui N, Arai M, et al. Effect of carbon and phosphorus contents on the graphitization of cementite in high carbon sheet steels. Tetsu-to-hagané, 1996, 82(12): 1029
    [24]
    Neri M A, Colás R, Valtierra S. Graphitization in high carbon commercial steels. J Mater Eng Perform, 1998, 7(4): 467 doi: 10.1361/105994998770347602
    [25]
    郭正洪. 固態相變動力學及晶體學. 上海: 上海交通大學出版社, 2019

    Guo Z H. Kinetics and Crystallography of Solid State Transformations. Shanghai: Shanghai Jiao Tong University Press, 2019
    [26]
    蔡珣. 材料科學與工程基礎. 上海: 上海交通大學出版社, 2010

    Cai X. Fundamentals of Materials Science and Engineering. Shanghai: Shanghai Jiao Tong University Press, 2010
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article views (530) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频