Citation: | ZHANG Yu-tao, LIN Guo-cheng, SHI Xue-qiang, ZHANG Yu-jie, WANG Xing-ming. Flame structure and oscillation characteristics of ethanol pool flame under transverse acoustic force[J]. Chinese Journal of Engineering, 2022, 44(8): 1453-1461. doi: 10.13374/j.issn2095-9389.2021.01.08.002 |
[1] |
葉喬涵, 張存位, 劉立文. 新型核殼結構干水滅火劑應用現狀與發展趨勢. 化工新型材料, 2021, 49(2):52
Ye Q H, Zhang C W, Liu L W. Research on application status and development of a new type core-shell structure dry water extinguishing agent. New Chem Mater, 2021, 49(2): 52
|
[2] |
Wang Q, Huang H W, Tang H J, et al. Nonlinear response of buoyant diffusion flame under acoustic excitation. Fuel, 2013, 103: 364 doi: 10.1016/j.fuel.2012.08.008
|
[3] |
唐甜甜, 李翠玉. 基于住宅區火災的消防聲波無人機設計. 機械設計, 2020, 37(增刊1): 48
Tang T T, Li C Y. Design of fire sonic unmanned aerial vehicle based on residential area fire. J Mach Des, 2020, 37(Suppl 1): 48
|
[4] |
Baillot F, Demare D. Physical mechanisms of a lifted non-premixed flame stabilized in an acoustic field. Combust Sci Technol, 2002, 174(8): 73
|
[5] |
Beisner E, Wiggins N D, Yue K B, et al. Acoustic flame suppression mechanics in a microgravity environment. Microgravity Sci Technol, 2015, 27(3): 141 doi: 10.1007/s12217-015-9422-4
|
[6] |
Hakim L, Schmitt T, Ducruix S, et al. Dynamics of a transcritical coaxial flame under a high-frequency transverse acoustic forcing: Influence of the modulation frequency on the flame response. Combust Flame, 2015, 162(10): 3482 doi: 10.1016/j.combustflame.2015.05.022
|
[7] |
Han X S, Yang J F, Mao J K. LES investigation of two frequency effects on acoustically forced premixed flame. Fuel, 2016, 185: 449 doi: 10.1016/j.fuel.2016.08.005
|
[8] |
Vignat G, Lo Schiavo E, de Laera D, et al. Dynamics of spray and swirling flame under acoustic oscillations: A joint experimental and LES investigation. Proc Combust Inst, 2021, 38(4): 6015 doi: 10.1016/j.proci.2020.05.054
|
[9] |
Kypraiou A M, Giusti A, Allison P M, et al. Dynamics of acoustically forced non-premixed flames close to blow-off. Exp Therm Fluid Sci, 2018, 95: 81 doi: 10.1016/j.expthermflusci.2018.01.036
|
[10] |
Xiong C Y, Liu Y H, Xu C S, et al. Extinguishing the dripping flame by acoustic wave. Fire Saf J, 2021, 120: 103109 doi: 10.1016/j.firesaf.2020.103109
|
[11] |
Zong R W, Kang R X, Liu C, et al. Analysis of flame extinguishment and height in low frequency acoustically excited methane jet diffusion flame. Microgravity Sci Technol, 2018, 30(3): 237 doi: 10.1007/s12217-017-9590-5
|
[12] |
Friedman A N, Stoliarov S I. Acoustic extinction of laminar line-flames. Fire Saf J, 2017, 93: 102 doi: 10.1016/j.firesaf.2017.09.002
|
[13] |
魏珠萍. 聲波影響燃燒及燃燒火焰特性的研究[學位論文]. 北京: 華北電力大學, 2019
Wei Z P. Study on the Influence of Acoustic Waves on Combustion Flame Characteristics [Dissertation]. Beijing: North China Electric Power University, 2019
|
[14] |
Fujisawa N, Iwasaki K, Fujisawa K, et al. Flow visualization study of a diffusion flame under acoustic excitation. Fuel, 2019, 251: 506 doi: 10.1016/j.fuel.2019.04.060
|
[15] |
Niegodajew P, ?ukasiak K, Radomiak H, et al. Application of acoustic oscillations in quenching of gas burner flame. Combust Flame, 2018, 194: 245 doi: 10.1016/j.combustflame.2018.05.007
|
[16] |
劉東, 賴旭, 胡曉, 等. 基于振動信號的水電機組狀態劣化在線評估方法研究. 水利學報, 2021, 52(4):461
Liu D, Lai X, Hu X, et al. Research on on-line evaluation method of state degradation of hydropower unit based on vibration signal. J Hydraul Eng, 2021, 52(4): 461
|
[17] |
Tieszen S R, Nicolette V F, Gritzo L A, et al. Vortical structures in pool fires: Observation, speculation, and simulation [R/OL]. The DOE Office of Scientific and Technical Information (1996-11-1) [2021-01-08].https://www.osti.gov/biblio/414306-iajdJc/webviewable/
|
[18] |
胡郡郡. 油池火火焰頸部特征及發展區溫度分布研究[學位論文]. 合肥: 中國科學技術大學, 2015
Hu J J. Studies on the Flame Necking-in Characteristic and Temperature Profile in Developing Area of Pool Fires [Dissertation]. Hefei: University of Science and Technology of China, 2015
|
[19] |
Pretrel H, Suard S, Audouin L. Experimental and numerical study of low frequency oscillatory behaviour of a large-scale hydrocarbon pool fire in a mechanically ventilated compartment. Fire Saf J, 2016, 83: 38 doi: 10.1016/j.firesaf.2016.04.001
|
[20] |
沈忠良. 聲作用下渦與火焰耦合影響NOx生成的實驗與模型研究[學位論文]. 杭州: 浙江工業大學, 2015
Shen Z L. Experimental and Model Investigation on Mechanism of Reducingnox Emission by Flame and Vortex Interacition with an Acoustic Excitation [Dissertation]. Hangzhou: Zhejiang University of Technology, 2015
|
[21] |
許曉晨, 李翔, 黃忠, 等. 基于MATLAB圖像處理的大缸徑定容彈中甲烷/空氣射流火焰傳播特性. 上海交通大學學報, 2020, 54(5):490
Xu X C, Li X, Huang Z, et al. Jet flame propagation characteristics of methane/air mixture in a large bore constant volume chamber based on MATLAB image processing method. J Shanghai Jiao Tong Univ, 2020, 54(5): 490
|
[22] |
田芳. 橫掠風對擴散火焰的擾動特性研究[學位論文]. 廣州: 華南理工大學, 2017
Tian F. Study on Disturbance Characteristics of Cross Flow to Diffusion Flame [Dissertation]. Guangzhou: South China University of Technology, 2017
|
[23] |
Skiba A W, Carter C D, Hammack S D, et al. High-fidelity flame-front wrinkling measurements derived from fractal analysis of turbulent premixed flames with large Reynolds numbers. Proc Combust Inst, 2021, 38(2): 2809 doi: 10.1016/j.proci.2020.06.041
|
[24] |
Carpes C Q, de Bortoli A L. Large eddy simulation of the acoustic of a premixed swirl flame. Comput Fluids, 2019, 182: 1 doi: 10.1016/j.compfluid.2019.02.009
|
[25] |
Majeski A J, Wilson D J, Kostiuk L W. Predicting the length of low-momentum jet diffusion flames in crossflow. Combust Sci Technol, 2004, 176(12): 2001 doi: 10.1080/00102200490514769
|
[26] |
Shang F J, Hu L H, Sun X P, et al. Flame downwash length evolution of non-premixed gaseous fuel jets in cross-flow: Experiments and a new correlation. Appl Energy, 2017, 198: 99 doi: 10.1016/j.apenergy.2017.04.043
|
[27] |
劉鵬翔. 環境風作用下小尺度原油沸溢池火行為及危害特性研究[學位論文]. 東營: 中國石油大學(華東), 2017
Liu P X. Small-Scale Experiment Study of Crude Oil Boilover Fire Behavior and Hazard Characteristics under Cross Air Flow [Dissertation]. Dongying: China University of Petroleum (Huadong), 2017
|