Citation: | CHEN Xu-fang, LI Yang, CHEN Rong-sheng, NI Hong-wei. NiCo-layered double hydroxides embedded with trace platinum species for boosting alkaline hydrogen evolution reaction[J]. Chinese Journal of Engineering, 2022, 44(6): 1027-1035. doi: 10.13374/j.issn2095-9389.2021.01.05.003 |
[1] |
Hosseini S E, Wahid M A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew Sustain Energy Rev, 2016, 57: 850 doi: 10.1016/j.rser.2015.12.112
|
[2] |
Reece S Y, Hamel J A, Sung K, et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science, 2011, 334(6056): 645 doi: 10.1126/science.1209816
|
[3] |
Luo J, Im J H, Mayer M T, et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science, 2014, 345(6204): 1593
|
[4] |
Zhu J, Hu L, Zhao P, et al. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem Rev, 2020, 120(2): 851 doi: 10.1021/acs.chemrev.9b00248
|
[5] |
Chen L, Dong X, Wang Y, et al. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide. Nat Commun, 2016, 7: 11741 doi: 10.1038/ncomms11741
|
[6] |
Koper M T M. A basic solution. Nat Chem, 2013, 5(4): 255 doi: 10.1038/nchem.1600
|
[7] |
Zeng K, Zhang D K. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci, 2010, 36(3): 307 doi: 10.1016/j.pecs.2009.11.002
|
[8] |
Seh Z W, Kibsgaard J, Dickens C F, et al. Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355(6321): eaad4998 doi: 10.1126/science.aad4998
|
[9] |
Jiao Y, Zheng Y, Jaroniec M, et al. ChemInform abstract: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. ChemInform, 2015, 46(25): 2060
|
[10] |
Sheng W C, Gasteiger H A, Shao-Horn Y. Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs alkaline electrolytes. J Electrochem Soc, 2010, 157(11): B1529 doi: 10.1149/1.3483106
|
[11] |
Conway B E, Jerkiewicz G. Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the 'volcano curve' for cathodic H2 evolution kinetics. Electrochimica Acta, 2000, 45(25-26): 4075 doi: 10.1016/S0013-4686(00)00523-5
|
[12] |
Liu L, Liu Y Y, Liu C G. Enhancing the understanding of hydrogen evolution and oxidation reactions on Pt(111) through ab initio simulation of electrode/electrolyte kinetics. J Am Chem Soc, 2020, 142(11): 4985 doi: 10.1021/jacs.9b13694
|
[13] |
Subbaraman R, Tripkovic D, Strmcnik D, et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science, 2011, 334(6060): 1256 doi: 10.1126/science.1211934
|
[14] |
Wang L, Zhu Y H, Zeng Z H, et al. Platinum-nickel hydroxide nanocomposites for electrocatalytic reduction of water. Nano Energy, 2017, 31: 456 doi: 10.1016/j.nanoen.2016.11.048
|
[15] |
Yin H J, Zhao S L, Zhao K, et al. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat Commun, 2015, 6: 6430 doi: 10.1038/ncomms7430
|
[16] |
Wang L, Lin C, Huang D K, et al. Optimizing the Volmer step by single-layer nickel hydroxide nanosheets in hydrogen evolution reaction of platinum. ACS Catal, 2015, 5(6): 3801 doi: 10.1021/cs501835c
|
[17] |
Xing Z C, Han C, Wang D W, et al. Ultrafine Pt nanoparticle-decorated Co(OH)2 nanosheet arrays with enhanced catalytic activity toward hydrogen evolution. ACS Catal, 2017, 7(10): 7131 doi: 10.1021/acscatal.7b01994
|
[18] |
Yu X W, Zhao J, Zheng L R, et al. Hydrogen evolution reaction in alkaline media: Alpha- or beta-nickel hydroxide on the surface of platinum? ACS Energy Lett, 2018, 3(1): 237
|
[19] |
Jadhav H S, Lim A C, Roy A, et al. Room-temperature ultrafast synthesis of NiCo-layered double hydroxide as an excellent electrocatalyst for water oxidation. ChemistrySelect, 2019, 4(8): 2409 doi: 10.1002/slct.201900063
|
[20] |
Waghmode B J, Gaikwad A P, Rode C V, et al. Calixarene intercalated NiCo layered double hydroxide for enhanced oxygen evolution catalysis. ACS Sustainable Chem Eng, 2018, 6(8): 9649 doi: 10.1021/acssuschemeng.7b04788
|
[21] |
Jiang J, Zhang A L, Li L L, et al. Nickel-cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction. J Power Sources, 2015, 278: 445 doi: 10.1016/j.jpowsour.2014.12.085
|
[22] |
Liang H F, Meng F, Cabán-Acevedo M, et al. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett, 2015, 15(2): 1421 doi: 10.1021/nl504872s
|
[23] |
劉佳, 張英華, 黃志安, 等. 三維ZnO/CdS/NiFe層狀雙金屬氫氧化物光電催化氧化甲烷. 工程科學學報, 2021, 43(8):9
Liu J, Zhang Y H, Huang Z A, et al. Photoelectrocatalytic oxidation of methane over three-dimensional ZnO/CdS/NiFe layered double hydroxide. Chin J Eng, 2021, 43(8): 9
|
[24] |
Chen R, Yang C J, Cai W Z, et al. Use of platinum as the counter electrode to study the activity of nonprecious metal catalysts for the hydrogen evolution reaction. ACS Energy Lett, 2017, 2(5): 1070 doi: 10.1021/acsenergylett.7b00219
|
[25] |
Liu Y, Gokcen D, Bertocci U, et al. Self-terminating growth of platinum films by electrochemical deposition. Science, 2012, 338(6112): 1327 doi: 10.1126/science.1228925
|
[26] |
Liu Y L, Wan L L, Wang J, et al. Binary electrocatalyst composed of Mo2C nanocrystals with ultra-low Pt loadings anchored in TiO2 nanotube arrays for hydrogen evolution reaction. Appl Surf Sci, 2020, 509: 144679 doi: 10.1016/j.apsusc.2019.144679
|
[27] |
Zhang B W, Jiang K, Wang H T, et al. Fluoride-induced dynamic surface self-reconstruction produces unexpectedly efficient oxygen-evolution catalyst. Nano Lett, 2019, 19(1): 530 doi: 10.1021/acs.nanolett.8b04466
|
[28] |
Chen G B, Wang T, Zhang J, et al. Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites. Adv Mater, 2018, 30(10): 1706279 doi: 10.1002/adma.201706279
|
[29] |
Li D, Zhang B W, Li Y, et al. Boosting hydrogen evolution activity in alkaline media with dispersed ruthenium clusters in NiCo-layered double hydroxide. Electrochem Commun, 2019, 101: 23 doi: 10.1016/j.elecom.2019.01.014
|
[30] |
Zhang B W, Qi Z Y, Wu Z S, et al. Defect-rich 2D material networks for advanced oxygen evolution catalysts. ACS Energy Lett, 2019, 4(1): 328 doi: 10.1021/acsenergylett.8b02343
|
[31] |
Wang Y, Zhuo H Y, Zhang X, et al. Synergistic effect between undercoordinated platinum atoms and defective nickel hydroxide on enhanced hydrogen evolution reaction in alkaline solution. Nano Energy, 2018, 48: 590 doi: 10.1016/j.nanoen.2018.03.080
|
[32] |
Yu F Y, Lang Z L, Yin L Y, et al. Pt-O bond as an active site superior to Pt0 in hydrogen evolution reaction. Nat Commun, 2020, 11: 490 doi: 10.1038/s41467-019-14274-z
|
[33] |
Zhao J Y, Zeng Y, Wang J, et al. Ultrahigh electrocatalytic activity with trace amounts of platinum loadings on free-standing mesoporous titanium nitride nanotube arrays for hydrogen evolution reactions. Nanoscale, 2020, 12(28): 15393 doi: 10.1039/D0NR01316A
|
[34] |
Bockris J O, Conway B E. The velocity of hydrogen evolution at silver cathodes as a function of hydrogen ion concentration. Trans Faraday Soc, 1952, 48: 724 doi: 10.1039/tf9524800724
|