Citation: | YANG Zhen, LI Ying, MA Pei-hua. Effect of precursor drying temperature on the morphology and electrochemical performance of lithium-rich manganese-based cathode materials[J]. Chinese Journal of Engineering, 2021, 43(8): 1019-1023. doi: 10.13374/j.issn2095-9389.2020.12.31.007 |
[1] |
郭慧. 層狀富鋰材料研究進展. 電源技術, 2018, 42(11):1736 doi: 10.3969/j.issn.1002-087X.2018.11.045
Guo H. Recent development of lithium-rich layered oxides. Chin J Power Sources, 2018, 42(11): 1736 doi: 10.3969/j.issn.1002-087X.2018.11.045
|
[2] |
陳宇方, 李宇杰, 鄭春滿, 等. 富鋰層狀氧化物正極材料研究進展. 無機材料學報, 2017, 32(8):792 doi: 10.15541/jim20160563
Chen Y F, Li Y J, Zheng C M, et al. Research development on lithium rich layered oxide cathode materials. J Inorg Mater, 2017, 32(8): 792 doi: 10.15541/jim20160563
|
[3] |
吳怡芳, 白利鋒, 王鵬飛, 等. 鋰離子電池正極材料研究. 電源技術, 2019, 43(9):1547 doi: 10.3969/j.issn.1002-087X.2019.09.038
Wu Y F, Bai L F, Wang P F, et al. Research progress of cathode materials for Li-ion battery. Chin J Power Sources, 2019, 43(9): 1547 doi: 10.3969/j.issn.1002-087X.2019.09.038
|
[4] |
Zhang N, Li J, Li H Y, et al. Structural, electrochemical, and thermal properties of nickel-rich LiNixMnyCozO2 materials. Chem Mater, 2018, 30(24): 8852 doi: 10.1021/acs.chemmater.8b03827
|
[5] |
Li J W, Li Y, Guo Y N, et al. A facile method to enhance electrochemical performance of high-nickel cathode material Li(Ni0.8Co0.1Mn0.1)O2 via Ti doping. J Mater Sci:Mater Electron, 2018, 29(13): 10702 doi: 10.1007/s10854-018-9093-1
|
[6] |
Li J W, Li Y, Yi W T, et al. Improved electrochemical performance of cathode material LiNi0.8Co0.1Mn0.1O2 by doping magnesium via co-precipitation method. J Mater Sci:Mater Electron, 2019, 30(8): 7490 doi: 10.1007/s10854-019-01062-0
|
[7] |
Li J W, Li Y, Ma P H. A facile method to improve electrochemical performances of nickel-rich cathode material Li(Ni0.6Co0.2Mn0.2)O2 by blending with solid electrolyte. Mater Res Express, 2019, 6(6): 066314 doi: 10.1088/2053-1591/ab1044
|
[8] |
Ashraf N, Isa khan M, Majid A, et al. A review of the interfacial properties of 2-D materials for energy storage and sensor applications. Chin J Phys, 2020, 66: 246 doi: 10.1016/j.cjph.2020.03.035
|
[9] |
Shunmugasundaram R, Senthil Arumugam R, Dahn J R. High capacity Li-rich positive electrode materials with reduced first-cycle irreversible capacity loss. Chem Mater, 2015, 27(3): 757 doi: 10.1021/cm504583y
|
[10] |
Manthiram A, Knight J C, Myung S T, et al. Nickel-rich and lithium-rich layered oxide cathodes: Progress and perspectives. Adv Energy Mater, 2016, 6(1): 1501010 doi: 10.1002/aenm.201501010
|
[11] |
Liu L H, Li M C, Chu L H, et al. Layered ternary metal oxides: Performance degradation mechanisms as cathodes, and design strategies for high-performance batteries. Prog Mater Sci, 2020, 111: 100655 doi: 10.1016/j.pmatsci.2020.100655
|
[12] |
Zhang K, Li B, Zuo Y X, et al. Voltage decay in layered Li-rich Mn-based cathode materials. Electrochem Energy Rev, 2019, 2(4): 606 doi: 10.1007/s41918-019-00049-z
|
[13] |
Zuo Y X, Li B, Jiang N, et al. A high-capacity O2-Type Li-rich cathode material with a single-layer Li2MnO3 superstructure. Adv Mater, 2018, 30(16): 1707255 doi: 10.1002/adma.201707255
|
[14] |
張寧, 厲英. 富鋰層狀氧化物正極材料: 結構、容量產生機理及改性. 化學進展, 2017, 29(4):373 doi: 10.7536/PC161019
Zhang N, Li Y. Lithium-rich layered oxides as cathode materials: Structures, capacity origin mechanisms and modifications. Prog Chem, 2017, 29(4): 373 doi: 10.7536/PC161019
|
[15] |
Jiang W J, Zhang C X, Feng Y Z, et al. Achieving high structure and voltage stability in cobalt-free Li-rich layered oxide cathodes via selective dual-cation doping. Energy Storage Mater, 2020, 32: 37 doi: 10.1016/j.ensm.2020.07.035
|
[16] |
Zhang C X, Feng Y Z, Wei B, et al. Heteroepitaxial oxygen-buffering interface enables a highly stable cobalt-free Li-rich layered oxide cathode. Nano Energy, 2020, 75: 104995 doi: 10.1016/j.nanoen.2020.104995
|
[17] |
Xie D J, Li G S, Li Q, et al. Improved cycling stability of cobalt-free Li-rich oxides with a stable interface by dual doping. Electrochimica Acta, 2016, 196: 505 doi: 10.1016/j.electacta.2016.02.210
|
[18] |
Eum D, Kim B, Kim S J, et al. Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nat Mater, 2020, 19(4): 419 doi: 10.1038/s41563-019-0572-4
|
[19] |
Chen G R, An J, Meng Y M, et al. Cation and anion Co-doping synergy to improve structural stability of Li- and Mn-rich layered cathode materials for lithium-ion batteries. Nano Energy, 2019, 57: 157 doi: 10.1016/j.nanoen.2018.12.049
|
[20] |
Yi T F, Han X, Yang S Y, et al. Enhanced electrochemical performance of Li-rich low-Co Li1.2Mn0.56Ni0.16Co0.08?xAlxO2 (0≤x≤0.08) as cathode materials. Sci China Mater, 2016, 59(8): 618 doi: 10.1007/s40843-016-5097-7
|
[21] |
Ye D L, Wang B, Chen Y, et al. Understanding the stepwise capacity increase of high energy low-Co Li-rich cathode materials for lithium ion batteries. J Mater Chem A, 2014, 2(44): 18767 doi: 10.1039/C4TA03692A
|
[22] |
Zhang N, Zaker N, Li H Y, et al. Cobalt-free nickel-rich positive electrode materials with a core–shell structure. Chem Mater, 2019, 31(24): 10150 doi: 10.1021/acs.chemmater.9b03515
|
[23] |
Zhou F, Zhao X M, van Bommel A, et al. Coprecipitation synthesis of NixMn1?x(OH)2 mixed hydroxides. Chem Mater, 2010, 22(3): 1015 doi: 10.1021/cm9018309
|
[24] |
曾毅, 吳偉, 高建華. 掃描電鏡和電子探針的基礎及應用. 上海: 上海科學技術出版社, 2009
Zeng Y, Wu W, Gao J H. The Basis and Application of Scanning Electron Microscope and Electron Probe. Shanghai: Shanghai Scientific & Technical Publishers, 2009
|
[25] |
鄭振環, 李強. X射線多晶衍射數據RIETVELD精修及GSAS軟件入門. 北京: 中國建材工業出版社, 2016
Zheng Z H, Li Q. Refinement of X-ray Polycrystalline Diffraction Data RIETVELD and Introduction to GSAS Software. Beijing: Chinese Building Materials Industry Publication, 2016
|
[26] |
姜傳海, 楊傳錚. X射線衍射技術及其應用. 上海: 華東理工大學出版社, 2010
Jiang C H, Yang C Z. X-ray Diffraction Technology and Its Applications. Shanghai: East China University of Science and Technology Press, 2010
|
[27] |
王其鈺, 褚賡, 張杰男, 等. 鋰離子扣式電池的組裝, 充放電測量和數據分析. 儲能科學與技術, 2018, 7(2):327
Wang Q Y, Chu G, Zhang J N, et al. The assembly, charge-discharge performance measurement and data analysis of lithium-ion button cell. Energy Storage Sci Technol, 2018, 7(2): 327
|