Citation: | XING Yi, ZHANG Hui, SU Wei, ZHANG Wen-bo, MA Zhi-liang, WANG Jia-qing, ZHANG Hong-shuo. Bibliometric analysis of the development tendency of VOCs catalytic oxidation[J]. Chinese Journal of Engineering, 2022, 44(8): 1462-1470. doi: 10.13374/j.issn2095-9389.2020.12.30.003 |
[1] |
Wang S B, Ang H M, Tade M O. Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art. Environ Int, 2007, 33(5): 694 doi: 10.1016/j.envint.2007.02.011
|
[2] |
Ousmane M, Liotta L F, Carlo G D, et al. Supported Au catalysts for low-temperature abatement of propene and toluene, as model VOCs: Support effect. Appl Catal B:Environ, 2011, 101(3-4): 629 doi: 10.1016/j.apcatb.2010.11.004
|
[3] |
Dudareva N, Negre F, Nagegowda D A, et al. Plant volatiles: Recent advances and future perspectives. Crit Rev Plant Sci, 2006, 25(5): 417 doi: 10.1080/07352680600899973
|
[4] |
Tassi F, Venturi S, Cabassi J, et al. Volatile organic compounds (VOCs) in soil gases from Solfatara crater (Campi Flegrei, southern Italy): Geogenic source(s) vs. biogeochemical processes. Appl Geochem, 2015, 56: 37
|
[5] |
Tassi F, Capecchiacci F, Buccianti A, et al. Sampling and analytical procedures for the determination of VOCs released into air from natural and anthropogenic sources: A comparison between SPME (Solid Phase Micro Extraction) and ST (Solid Trap) methods. Appl Geochem, 2012, 27(1): 115 doi: 10.1016/j.apgeochem.2011.09.023
|
[6] |
Montero-Montoya R, López-Vargas R, Arellano-Aguilar O. Volatile organic compounds in air: Sources, distribution, exposure and associated illnesses in children. Ann Glob Health, 2018, 84(2): 225 doi: 10.29024/aogh.910
|
[7] |
Hui L R, Liu X G, Tan Q W, et al. VOC characteristics, chemical reactivity and sources in urban Wuhan, central China. Atmos Environ, 2020, 224: 117340 doi: 10.1016/j.atmosenv.2020.117340
|
[8] |
Alberici R M, Jardim W F. Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide. Appl Catal B:Environ, 1997, 14(1-2): 55 doi: 10.1016/S0926-3373(97)00012-X
|
[9] |
Zhang L, Peng Y X, Zhang J, et al. Adsorptive and catalytic properties in the removal of volatile organic compounds over zeolite-based materials. Chin J Catal, 2016, 37(6): 800 doi: 10.1016/S1872-2067(15)61073-7
|
[10] |
Amann M, Lutz M. The revision of the air quality legislation in the European Union related to ground-level ozone. J Hazard Mater, 2000, 78(1-3): 41 doi: 10.1016/S0304-3894(00)00216-8
|
[11] |
Li W B, Wang J X, Gong H. Catalytic combustion of VOCs on non-noble metal catalysts. Catal Today, 2009, 148(1-2): 81 doi: 10.1016/j.cattod.2009.03.007
|
[12] |
Belpomme D, Irigaray P, Hardell L, et al. The multitude and diversity of environmental carcinogens. Environ Res, 2007, 105(3): 414 doi: 10.1016/j.envres.2007.07.002
|
[13] |
Atkinson R. Atmospheric chemistry of VOCs and NOx. Atmos Environ, 2000, 34(12-14): 2063 doi: 10.1016/S1352-2310(99)00460-4
|
[14] |
Zang M, Zhao C C, Wang Y Q, et al. A review of recent advances in catalytic combustion of VOCs on perovskite-type catalysts. J Saudi Chem Soc, 2019, 23(6): 645 doi: 10.1016/j.jscs.2019.01.004
|
[15] |
Li N, Zhang X L, Shi M J, et al. Does China's air pollution abatement policy matter? An assessment of the Beijing-Tianjin-Hebei region based on a multi-regional CGE model. Energy Policy, 2019, 127: 213 doi: 10.1016/j.enpol.2018.12.019
|
[16] |
李國文, 樊青娟, 劉強, 等. 揮發性有機廢氣(VOCs)的污染控制技術. 西安建筑科技大學學報(自然科學版), 1998, 30(4):399
Li G W, Fan Q J, Liu Q, et al. The control technique over the pollution caused by VOCs. J Xi’an Univ Archit &technology, 1998, 30(4): 399
|
[17] |
楊利嫻. 我國工業源VOCs排放時空分布特征與控制策略研究[學位論文]. 廣州: 華南理工大學, 2012
Yang L X. Study on Temporal-Spatial Characteristic and Control Strategy of Industrial Emissions of Volatile Organic Compounds in China [Dissertation]. Guangzhou: South China University of Technology, 2012
|
[18] |
Liotta L F. Catalytic oxidation of volatile organic compounds on supported noble metals. Appl Catal B:Environ, 2010, 100(3-4): 403 doi: 10.1016/j.apcatb.2010.08.023
|
[19] |
Zhang S H, You J P, Kennes C, et al. Current advances of VOCs degradation by bioelectrochemical systems: A review. Chem Eng J, 2018, 334: 2625 doi: 10.1016/j.cej.2017.11.014
|
[20] |
Simayi M, Hao Y F, Li J, et al. Establishment of county-level emission inventory for industrial NMVOCs in China and spatial-temporal characteristics for 2010—2016. Atmos Environ, 2019, 211: 194 doi: 10.1016/j.atmosenv.2019.04.064
|
[21] |
Li J, Zhou Y, Simayi M, et al. Spatial-temporal variations and reduction potentials of volatile organic compound emissions from the coking industry in China. J Clean Prod, 2019, 214: 224 doi: 10.1016/j.jclepro.2018.12.308
|
[22] |
Zhu L L, Shen D K, Luo K H. A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods. J Hazard Mater, 2020, 389: 122102 doi: 10.1016/j.jhazmat.2020.122102
|
[23] |
Ko?odziej A, ?ojewska J. Optimization of structured catalyst carriers for VOC combustion. Catal Today, 2005, 105(3-4): 378 doi: 10.1016/j.cattod.2005.06.029
|
[24] |
Kamal M S, Razzak S A, Hossain M M. Catalytic oxidation of volatile organic compounds (VOCs) — A review. Atmos Environ, 2016, 140: 117 doi: 10.1016/j.atmosenv.2016.05.031
|
[25] |
李明哲, 黃正宏, 康飛宇. 揮發性有機物的控制技術進展. 化學工業與工程, 2015, 32(3):2
Li M Z, Huang Z H, Kang F Y. Progress of volatile organic compounds control technology. Chem Ind Eng, 2015, 32(3): 2
|
[26] |
Zou W X, Gao B, Ok Y S, et al. Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: A critical review. Chemosphere, 2019, 218: 845 doi: 10.1016/j.chemosphere.2018.11.175
|
[27] |
Glänzel W. Bibliometrics as a research field: A course on theory and application of bibliometric indicators [R/OL]. Researchgate (2003)[2020-1230].https://www.researchgate.net/publication/242406991_Bibliometrics_as_a_research_field_A_course_on_theory_and_application_of_bibliometric_indicators
|
[28] |
Hirsch J E. An index to quantify an individual's scientific research output. PNAS, 2005, 102(46): 16569 doi: 10.1073/pnas.0507655102
|
[29] |
Xing Y, Guo Z F, Su W, et al. A review of the hot spot analysis and the research status of single-atom catalysis based on the bibliometric analysis. New J Chem, 2021, 45: 4253 doi: 10.1039/D0NJ05673A
|
[30] |
Xing Y, Ma Z L, Su W, et al. Analysis of research status of CO2 conversion technology based on bibliometrics. Catalysts, 2020, 10(4): 370 doi: 10.3390/catal10040370
|
[31] |
Liebscher H. Economic solutions for compliance to the new European VOC Directive. Prog Org Coat, 2000, 40(1-4): 75 doi: 10.1016/S0300-9440(00)00139-9
|
[32] |
楊一鳴, 崔積山, 童莉, 等. 美國VOCs定義演變歷程對我國VOCs環境管控的啟示. 環境科學研究, 2017, 30(3):368
Yang Y M, Cui J S, Tong L, et al. Evolution of the definition of volatile organic compounds in the United States and its implications for China. Res Environ Sci, 2017, 30(3): 368
|
[33] |
邢奕, 張文伯, 蘇偉, 等. 中國鋼鐵行業超低排放之路. 工程科學學報, 2021, 43(1):1
Xing Y, Zhang W B, Su W, et al. Research of ultra-low emission technologies of the iron and steel industry in China. Chin J Eng, 2021, 43(1): 1
|
[34] |
Garfield E. The history and meaning of the journal impact factor. JAMA, 2006, 295(1): 90 doi: 10.1001/jama.295.1.90
|
[35] |
Wang Z H, Zhao Y D, Wang B. A bibliometric analysis of climate change adaptation based on massive research literature data. J Clean Prod, 2018, 199: 1072 doi: 10.1016/j.jclepro.2018.06.183
|
[36] |
Casta?o M H, Molina R, Moreno S. Catalytic oxidation of VOCs on MnMgAlOx mixed oxides obtained by auto-combustion. J Mol Catal A:Chem, 2015, 398: 358 doi: 10.1016/j.molcata.2015.01.001
|
[37] |
Xu Z, Chen J, Cai S C, et al. Biphasic Ag block assisting electron and energy transfer to facilitate photothermal catalytic oxidation of HCHO over manganese oxide. Mater Today Energy, 2019, 14: 100343 doi: 10.1016/j.mtener.2019.100343
|
[38] |
Wang J G, Zhang C, Yang S F, et al. Highly improved acetone oxidation activity over mesoporous hollow nanospherical MnxCo3?xO4 solid solutions. Catal Sci Technol, 2019, 9(22): 6379 doi: 10.1039/C9CY01791G
|
[39] |
Hoseini S, Rahemi N, Allahyari S, et al. Application of plasma technology in the removal of volatile organic compounds (BTX) using manganese oxide nano-catalysts synthesized from spent batteries. J Clean Prod, 2019, 232: 1134 doi: 10.1016/j.jclepro.2019.05.227
|
[40] |
Tian M J, Guo X, Dong R, et al. Insight into the boosted catalytic performance and chlorine resistance of nanosphere-like meso-macroporous CrOx/MnCo3Ox for 1, 2-dichloroethane destruction. Appl Catal B:Environ, 2019, 259: 118018 doi: 10.1016/j.apcatb.2019.118018
|
[41] |
Veerapandian S K P, Ye Z P, Giraudon J M, et al. Plasma assisted Cu-Mn mixed oxide catalysts for trichloroethylene abatement in moist air. J Hazard Mater, 2019, 379: 120781 doi: 10.1016/j.jhazmat.2019.120781
|
[42] |
Einaga H, Yamamoto S, Maeda N, et al. Structural analysis of manganese oxides supported on SiO2 for benzene oxidation with ozone. Catal Today, 2015, 242: 287 doi: 10.1016/j.cattod.2014.05.018
|
[43] |
Wang Y X, Aghamohammadi S, Li D Y, et al. Structure dependence of Nb2O5-X supported manganese oxide for catalytic oxidation of propane: Enhanced oxidation activity for MnOx on a low surface area Nb2O5-X. Appl Catal B:Environ, 2019, 244: 438 doi: 10.1016/j.apcatb.2018.11.066
|
[44] |
Joung H J, Kim J H, Oh J S, et al. Catalytic oxidation of VOCs over CNT-supported platinum nanoparticles. Appl Surf Sci, 2014, 290: 267 doi: 10.1016/j.apsusc.2013.11.066
|
[45] |
Wu J C S, Chang T Y. VOC deep oxidation over Pt catalysts using hydrophobic supports. Catal Today, 1998, 44(1-4): 111 doi: 10.1016/S0920-5861(98)00179-5
|
[46] |
Wu J C S, Lin Z A, Tsai F M, et al. Low-temperature complete oxidation of BTX on Pt/activated carbon catalysts. Catal Today, 2000, 63(2-4): 419 doi: 10.1016/S0920-5861(00)00487-9
|
[47] |
Lin F W, Xiang L, Zhang Z M, et al. Comprehensive review on catalytic degradation of Cl-VOCs under the practical application conditions. Crit Rev Environ Sci Technol, 2020: 1
|
[48] |
El Assal Z, Ojala S, Pitk?aho S, et al. Comparative study on the support properties in the total oxidation of dichloromethane over Pt catalysts. Chem Eng J, 2017, 313: 1010 doi: 10.1016/j.cej.2016.10.139
|
[49] |
Rao Z P, Shi G S, Wang Z, et al. Photocatalytic degradation of gaseous VOCs over Tm3+-TiO2: Revealing the activity enhancement mechanism and different reaction paths. Chem Eng J, 2020, 395: 125078 doi: 10.1016/j.cej.2020.125078
|
[50] |
Li J W, Zhao P, Liu S T. SnOx-MnOx-TiO2 catalysts with high resistance to chlorine poisoning for low-temperature chlorobenzene oxidation. Appl Catal A:Gen, 2014, 482: 363 doi: 10.1016/j.apcata.2014.06.013
|
[51] |
Busca G, Daturi M, Finocchio E, et al. Transition metal mixed oxides as combustion catalysts: Preparation, characterization and activity mechanisms. Catal Today, 1997, 33(1-3): 239 doi: 10.1016/S0920-5861(96)00112-5
|
[52] |
Dissanayake S, Wasalathanthri N, Shirazi Amin A, et al. Mesoporous Co3O4 catalysts for VOC elimination: Oxidation of 2-propanol. Appl Catal A:Gen, 2020, 590: 117366 doi: 10.1016/j.apcata.2019.117366
|
[53] |
?ojewska J, Ko?odziej A, ?ojewski T, et al. Cobalt catalyst deposited on metallic microstructures for VOC combustion: Preparation by non-equilibrium plasma. Catal Commun, 2008, 10(2): 142 doi: 10.1016/j.catcom.2008.07.042
|
[54] |
Li Y, Shen W. Morphology-dependent nanocatalysts: Rod-shaped oxides. Chem Soc Rev, 2014, 43(5): 1543 doi: 10.1039/C3CS60296F
|
[55] |
Sk?rman B, Grandjean D, Benfield R E, et al. Carbon monoxide oxidation on nanostructured CuOx/CeO2 composite particles characterized by HREM, XPS, XAS, and high-energy diffraction. J Catal, 2002, 211(1): 119
|
[56] |
Zimmer P, Tsch?pe A, Birringer R. Temperature-programmed reaction spectroscopy of ceria- and Cu/ceria-supported oxide catalyst. J Catal, 2002, 205(2): 339 doi: 10.1006/jcat.2001.3461
|
[57] |
Li H F, Lu G Z, Dai Q G, et al. Hierarchical organization and catalytic activity of high-surface-area mesoporous ceria microspheres prepared via hydrothermal routes. ACS Appl Mater Interfaces, 2010, 2(3): 838 doi: 10.1021/am900829y
|
[58] |
Wang Q Y, Yeung K L, Ba?ares M A. Ceria and its related materials for VOC catalytic combustion: A review. Catal Today, 2020, 356: 141 doi: 10.1016/j.cattod.2019.05.016
|
[59] |
Rezayati S, Ramazani A. A review on electrophilic thiocyanation of aromatic and heteroaromatic compounds. Tetrahedron, 2020, 76(36): 131382 doi: 10.1016/j.tet.2020.131382
|
[60] |
林理量, 程勇, 曹禮明, 等. 深圳臭氧污染日的VOCs組成與來源特征. 中國環境科學, 2021, 41(8):3484 doi: 10.3969/j.issn.1000-6923.2021.08.002
Lin L L, Cheng Y, Cao L M, et al. The characterization and source apportionment of VOCs in Shenzhen during ozone polluted period. China Environ Sci, 2021, 41(8): 3484 doi: 10.3969/j.issn.1000-6923.2021.08.002
|
[61] |
Dai C H, Zhou Y Y, Peng H, et al. Current progress in remediation of chlorinated volatile organic compounds: A review. J Ind Eng Chem, 2018, 62: 106 doi: 10.1016/j.jiec.2017.12.049
|