Citation: | TANG Zhong-nan, XIN Hong-bo, WANG Yu-jie, CHEN Qing-yang, WANG Peng, YANG Xi-xiang. Coordinated variable-based guidance method and experimental verification for multi-UAVs[J]. Chinese Journal of Engineering, 2022, 44(8): 1396-1405. doi: 10.13374/j.issn2095-9389.2020.12.30.001 |
[1] |
Kim H G, Kim H J. Backstepping-based impact time control guidance law for missiles with reduced seeker field-of-view. IEEE Trans Aerosp Electron Syst, 2019, 55(1): 82 doi: 10.1109/TAES.2018.2848319
|
[2] |
Zeng J, Dou L H, Xin B. A joint mid-course and terminal course cooperative guidance law for multi-missile salvo attack. Chin J Aeronaut, 2018, 31(6): 1311 doi: 10.1016/j.cja.2018.03.016
|
[3] |
Zhen Z Y, Xing D J, Gao C. Cooperative search-attack mission planning for multi-UAV based on intelligent self-organized algorithm. Aerosp Sci Technol, 2018, 76: 402 doi: 10.1016/j.ast.2018.01.035
|
[4] |
Duan H B, Zhao J X, Deng Y M, et al. Dynamic discrete pigeon-inspired optimization for multi-UAV cooperative search-attack mission planning. IEEE Trans Aerosp Electron Syst, 2021, 57(1): 706 doi: 10.1109/TAES.2020.3029624
|
[5] |
Liu X, Liu L, Wang Y J. Minimum time state consensus for cooperative attack of multi-missile systems. Aerosp Sci Technol, 2017, 69: 87 doi: 10.1016/j.ast.2017.06.016
|
[6] |
He S M, Kim M, Song T, et al. Three-dimensional salvo attack guidance considering communication delay. Aerosp Sci Technol, 2018, 73: 1 doi: 10.1016/j.ast.2017.11.019
|
[7] |
Kang S, Wang J N, Li G, et al. Optimal cooperative guidance law for salvo attack: An MPC-based consensus perspective. IEEE Trans Aerosp Electron Syst, 2018, 54(5): 2397 doi: 10.1109/TAES.2018.2816880
|
[8] |
彭志紅, 孫琳, 陳杰. 基于改進差分進化算法的無人機在線低空突防航跡規劃. 北京科技大學學報, 2012, 34(1):96
Peng Z H, Sun L, Chen J. Online path planning for UAV low-altitude penetration based on an improved differential evolution algorithm. J Univ Sci Technol Beijing, 2012, 34(1): 96
|
[9] |
Kim C Y, Ra W S, Whang I H. Time-to-go rational function biased PN guidance law for precise impact angle // 2017 17th International Conference on Control, Automation and Systems (ICCAS). Jeju, 2017: 1804
|
[10] |
Chen X T, Wang J Z. Nonsingular sliding-mode control for field-of-view constrained impact time guidance. J Guid Control Dyn, 2018, 41(5): 1214 doi: 10.2514/1.G003146
|
[11] |
Erer K S, Tekin R. Impact time and angle control based on constrained optimal solutions. J Guid Control Dyn, 2016, 39(10): 2448 doi: 10.2514/1.G000414
|
[12] |
Hou Z W, Liu L, Wang Y J. Time-to-go estimation for terminal sliding mode based impact angle constrained guidance. Aerosp Sci Technol, 2017, 71: 685 doi: 10.1016/j.ast.2017.10.016
|
[13] |
Zhao J B, Yang S X. Integrated cooperative guidance framework and cooperative guidance law for multi-missile. Chin J Aeronaut, 2018, 31(3): 546 doi: 10.1016/j.cja.2017.12.013
|
[14] |
Xu Q Q, Ge J Q, Yang T. Multiple missiles cooperative guidance based on proportional navigation guidance // 2020 Chinese Control and Decision Conference (CCDC). Hefei, 2020: 4423
|
[15] |
Song J H, Song S M, Xu S L. Three-dimensional cooperative guidance law for multiple missiles with finite-time convergence. Aerosp Sci Technol, 2017, 67: 193 doi: 10.1016/j.ast.2017.04.007
|
[16] |
Kim H G, Cho D, Kim H J. Sliding mode guidance law for impact time control without explicit time-to-go estimation. IEEE Trans Aerosp Electron Syst, 2019, 55(1): 236 doi: 10.1109/TAES.2018.2850208
|
[17] |
Zhu J W, Su D L, Xie Y, et al. Impact time and angle control guidance independent of time-to-go prediction. Aerosp Sci Technol, 2019, 86: 818 doi: 10.1016/j.ast.2019.01.047
|
[18] |
Zhu J W, Yang Y P, Zhang W A, et al. Cooperative attack tolerant tracking control for multi-agent system with a resilient switching scheme. Neurocomputing, 2020, 409: 372 doi: 10.1016/j.neucom.2020.06.087
|
[19] |
趙建博, 楊樹興. 多導彈協同制導研究綜述. 航空學報, 2017, 38(1):020256
Zhao J B, Yang S X. Review of multi-missile cooperative guidance. Acta Aeronaut et Astronaut Sin, 2017, 38(1): 020256
|
[20] |
呂騰, 呂躍勇, 李傳江, 等. 帶空間協同的多導彈時間協同制導律. 航空學報, 2018, 39(10):322115
Lü T, Lü Y Y, Li C J, et al. Time-cooperative guidance law for multiple missiles with spatial cooperation. Acta Aeronaut et Astronaut Sin, 2018, 39(10): 322115
|
[21] |
Ji H B, Liu X D, Song Z Y, et al. Time-varying sliding mode guidance scheme for maneuvering target interception with impact angle constraint. J Frankl Inst, 2018, 355(18): 9192 doi: 10.1016/j.jfranklin.2017.01.036
|
[22] |
He S M, Wang W, Wang J. Three-dimensional impact angle guidance laws based on model predictive control and sliding mode disturbance observer. J Dyn Syst Meas Control, 2016, 138(8): 081006 doi: 10.1115/1.4033272
|
[23] |
Liu B J, Hou M S, Yu Y, et al. Three-dimensional impact angle control guidance with field-of-view constraint. Aerosp Sci Technol, 2020, 105: 106014 doi: 10.1016/j.ast.2020.106014
|
[24] |
Shaferman V, Shima T. Cooperative differential games guidance laws for imposing a relative intercept angle. J Guid Control Dyn, 2017, 40(10): 2465 doi: 10.2514/1.G002594
|
[25] |
Wei X Q, Yang J Y, Fan X R. Design of distributed guidance laws for multiple unmanned aerial vehicles cooperative attack of a moving target based on reducing surrounding area. Trans Inst Meas Control, 2020, 42(12): 2155 doi: 10.1177/0142331220908683
|
[26] |
Lee C H, Tsourdos A. Cooperative control for multiple interceptors to maximize collateral damage. IFAC-PapersOnLine, 2018, 51(12): 56 doi: 10.1016/j.ifacol.2018.07.088
|
[27] |
楊哲. 多約束末制導律與目標狀態估計方法研究[學位論文]. 北京: 北京理工大學, 2017
Yang Z. Research on Multi-Constrainted Terminal Guidance Laws and Target State Estimation Methods [Dissertation]. Beijing: Beijing Institute of Technology, 2017
|
[28] |
Xin H B, Chen Q Y, Wang Y J, et al. A path planning and guidance method for multi-UAVs coordinated strike with time-space constraints // 2020 12th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). Hangzhou, 2020: 193
|
[29] |
徐誠, 黃大慶, 孔繁鏘. 一種小型無人機無源目標定位方法及精度分析. 儀器儀表學報, 2015, 36(5):1115
Xu C, Huang D Q, Kong F Q. Small UAV passive target localization approach and accuracy analysis. Chin J Sci Instrum, 2015, 36(5): 1115
|