<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 5
May  2022
Turn off MathJax
Article Contents
XIONG Min, SHI Guan-yong, TIAN Lei, LIU Chong-wei, CAO Cai-fang, ZHANG Zhi-hui, XU Zhi-feng. Preparation of metallic arsenic from calcium arsenate by carbon thermal roasting reduction[J]. Chinese Journal of Engineering, 2022, 44(5): 886-893. doi: 10.13374/j.issn2095-9389.2020.12.14.002
Citation: XIONG Min, SHI Guan-yong, TIAN Lei, LIU Chong-wei, CAO Cai-fang, ZHANG Zhi-hui, XU Zhi-feng. Preparation of metallic arsenic from calcium arsenate by carbon thermal roasting reduction[J]. Chinese Journal of Engineering, 2022, 44(5): 886-893. doi: 10.13374/j.issn2095-9389.2020.12.14.002

Preparation of metallic arsenic from calcium arsenate by carbon thermal roasting reduction

doi: 10.13374/j.issn2095-9389.2020.12.14.002
More Information
  • Corresponding author: E-mail:xzf_1@163.com
  • Received Date: 2020-12-14
    Available Online: 2021-03-13
  • Publish Date: 2022-05-25
  • Given the widespread application of the lime precipitation process for arsenic removal in the smelting of arsenic-containing minerals, the resourcefulness of calcium arsenate use has received increasing attention. In general, more types of arsenate have different high-temperature characteristics, and the slag type is complicated under mixed reduction roasting and difficult to recover. Additionally, arsenate in the form of calcium arsenate is a more common and inexpensive product in the metallurgical process. Because whether it is arsenic-containing wastewater, arsenic slag, arsenate, and so on, the material can be separated from the system by inexpensive lime precipitation or calcification transformation in simple metallurgical equipment to generate calcium arsenate. Therefore, this paper was devoted to preparing commercially valuable metallic monomers of arsenic by carbon thermal roasting reduction of calcium arsenate and to starting scientific research to advance the harmless treatment of arsenic hazardous waste to arsenic resource recovery and use. Among them, thermogravimetric analysis shows that the mass loss of calcium arsenate mixed with carbon powder pyrolysis is divided into 3 stages: stages 1 and 2 are water loss processes, and stage 3 involves the carbon reduction of calcium arsenate to generate CaO and arsenic vapor. It is found that the stage III reaction mechanism could be explained using the phase boundary reaction kinetic model. The experimental results of single-factor conditions show that the arsenic volatilization rate reaches 99.94% at a constant temperature of 1000 °C for 60 min and a carbon allotment factor of 1.4. The characterization of the relevant products in the reaction system by X-ray diffractometer (XRD) and scanning electron microscope energy spectrometer (SEM?EDS) show that the arsenic product is mainly flaked metallic arsenic and amorphous powdered arsenicunder better conditions, and the roasted residue is CaO.

     

  • loading
  • [1]
    Jr J V B, Brown P W. The stabilities of calcium arsenates at 23±1 ℃. J Hazard Mater, 1999, 69(2): 197 doi: 10.1016/S0304-3894(99)00105-3
    [2]
    Long G, Peng Y J, Bradshaw D. A review of copper-arsenic mineral removal from copper concentrates. Miner Eng, 2012, 36-38: 179 doi: 10.1016/j.mineng.2012.03.032
    [3]
    Lee P K, Yu S, Jeong Y J, et al. Source identification of arsenic contamination in agricultural soils surrounding a closed Cu smelter, South Korea. Chemosphere, 2019, 217: 183 doi: 10.1016/j.chemosphere.2018.11.010
    [4]
    Leist M, Casey R J, Caridi D. The fixation and leaching of cement stabilized arsenic. Waste Manag, 2003, 23(4): 353 doi: 10.1016/S0956-053X(02)00116-2
    [5]
    袁永鋒, 劉素紅. 底吹連續煉銅過程中砷的走向及控制. 中國有色冶金, 2020, 49(2):37

    Yuan Y F, Liu S H. Distribution and removal of arsenic in the process of bottom-blowing continuous copper smelting. China Nonferrous Metall, 2020, 49(2): 37
    [6]
    賈海. 高砷冶金廢料的回收與綜合利用[學位論文]. 長沙: 中南大學, 2013

    Jia H. Recycling and Comprehensive Utilization of Metallurgical Waste with High Arsenic Content [Dissertation]. Changsha: Central South University, 2013
    [7]
    Liu G, Shi Y, Guo G L, et al. Soil pollution characteristics and systemic environmental risk assessment of a large-scale arsenic slag contaminated site. J Clean Prod, 2020, 251: 119721 doi: 10.1016/j.jclepro.2019.119721
    [8]
    Dutré V, Vandecasteele C. Solidification/stabilisation of arsenic-containing waste: Leach tests and behaviour of arsenic in the leachate. Waste Manag, 1995, 15(1): 55 doi: 10.1016/0956-053X(95)00002-H
    [9]
    Dutré V, Vandecasteele C. Solidification/stabilisation of hazardous arsenic containing waste from a copper refining process. J Hazard Mater, 1995, 40(1): 55 doi: 10.1016/0304-3894(94)00080-Z
    [10]
    Dutré V, Vandecasteele C. An evaluation of the solidification/stabilisation of industrial arsenic containing waste using extraction and semi-dynamic leach tests. Waste Manag, 1996, 16(7): 625 doi: 10.1016/S0956-053X(97)00003-2
    [11]
    Vandecasteele C, Dutré V, Geysen D, et al. Solidification/stabilisation of arsenic bearing fly ash from the metallurgical industry. Immobilisation mechanism of arsenic. Waste Manag, 2002, 22(2): 143
    [12]
    Choi W H, Lee S R, Park J Y. Cement based solidification/stabilization of arsenic-contaminated mine tailings. Waste Manag, 2009, 29(5): 1766 doi: 10.1016/j.wasman.2008.11.008
    [13]
    Akhter H, Cartledge F K, Roy A, et al. Solidification/stabilization of arsenic salts: Effects of long cure times. J Hazard Mater, 1997, 52(2-3): 247 doi: 10.1016/S0304-3894(96)01811-0
    [14]
    Singh T S, Pant K K. Solidification/stabilization of arsenic containing solid wastes using Portland cement, fly ash and polymeric materials. J Hazard Mater, 2006, 131(1-3): 29 doi: 10.1016/j.jhazmat.2005.06.046
    [15]
    Yoon I H, Moon D H, Kim K W, et al. Mechanism for the stabilization/solidification of arsenic-contaminated soils with Portland cement and cement kiln dust. J Environ Manag, 2010, 91(11): 2322 doi: 10.1016/j.jenvman.2010.06.018
    [16]
    Zhao Z W, Song Y X, Min X B, et al. XPS and FTIR studies of sodium arsenate vitrification by cullet. J Non Cryst Solids, 2016, 452: 238 doi: 10.1016/j.jnoncrysol.2016.08.028
    [17]
    Zhao Z W, Chai L Y, Peng B, et al. Arsenic vitrification by copper slag based glass: Mechanism and stability studies. J Non Cryst Solids, 2017, 466-467: 21 doi: 10.1016/j.jnoncrysol.2017.03.039
    [18]
    徐建兵, 沈強華, 陳雯, 等. 含砷廢渣處理現狀及對策. 礦冶, 2017, 26(3):82 doi: 10.3969/j.issn.1005-7854.2017.03.018

    Xu J B, Shen Q H, Chen W, et al. The present situation and the countermeasure of the processing of arsenic residues. Min Metall, 2017, 26(3): 82 doi: 10.3969/j.issn.1005-7854.2017.03.018
    [19]
    陸曉陽. 含砷廢渣處理技術的現狀與進展. 現代鹽化工, 2018, 45(5):87 doi: 10.3969/j.issn.1005-880X.2018.05.041

    Lu X Y. The status quo and progress of arsenic-containing waste residue treatment technology. Mod Salt Chem Ind, 2018, 45(5): 87 doi: 10.3969/j.issn.1005-880X.2018.05.041
    [20]
    盧紅波. As2O3真空碳熱還原制備粗金屬砷的熱力學研究. 有色金屬(冶煉部分), 2012(10):55

    Lu H B. Thermodynamic analysis on crude metal arsenic preparation by arsenic trioxide carbothermic reduction in vacuum. Nonferrous Met (Extr Metall), 2012(10): 55
    [21]
    李學鵬. 直流電弧爐制備金屬砷試驗研究. 礦冶, 2012, 21(3):56 doi: 10.3969/j.issn.1005-7854.2012.03.015

    Li X P. Experiment study on arsenic preparation by dc furnace. Min Metall, 2012, 21(3): 56 doi: 10.3969/j.issn.1005-7854.2012.03.015
    [22]
    潘崇發. 提高金屬砷質量的有效途徑. 有色金屬(冶煉部分), 1994(2):32

    Pan C F. An effective way to improve the quality of metallic arsenic. Nonferrous Met (Extr Metall), 1994(2): 32
    [23]
    黃自力, 劉緣緣, 陶青英, 等. 石灰沉淀法除砷的影響因素. 環境工程學報, 2012, 6(3):734

    Huang Z L, Liu Y Y, Tao Q Y, et al. Influencing factors of arsenic removal by lime precipitation. Chin J Environ Eng, 2012, 6(3): 734
    [24]
    張華. 砷酸鈣鹽的溶解度和穩定性研究[學位論文]. 桂林: 桂林工學院, 2005

    Zhang H. Study on the solubility and stability of calcium arsenate [Dissertation]. Guilin: Guilin Institute of Technology, 2005
    [25]
    劉輝利, 朱義年. CO2對砷酸鈣穩定性影響的熱力學分析. 環境保護科學, 2006, 32(3):7 doi: 10.3969/j.issn.1004-6216.2006.03.003

    Liu H L, Zhu Y N. Thermodynamic analysis of the CO2 effects on the stability of calcium arsenates. Environ Prot Sci, 2006, 32(3): 7 doi: 10.3969/j.issn.1004-6216.2006.03.003
    [26]
    Bothe J V, Brown P W. Arsenic immobilization by calcium arsenate formation. Environ Sci Technol, 1999, 33(21): 3806 doi: 10.1021/es980998m
    [27]
    王廣, 薛慶國, 沈穎峰, 等. 硼鐵精礦的碳熱還原動力學. 工程科學學報, 2016, 38(5):623

    Wang G, Xue Q G, Shen Y F, et al. Carbothermic reduction kinetics of boron-bearing iron concentrate. Chin J Eng, 2016, 38(5): 623
    [28]
    胡榮祖, 高勝利, 趙鳳起. 熱分析動力學. 2版. 北京: 科學出版社, 2008: 20

    Hu R Z, Gao S L, Zhao F Q. Thermal Analysis Kinetics. 2nd ed. Beijing: Science Press, 2008: 20
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article views (834) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频