Citation: | LU Jia-yao, LI Ying, NI Pei-yuan, TANG Tian-tian. Performance of perovskite-type Li-ion solid electrolyte Li2x?ySr1?xTi1?yNbyO3[J]. Chinese Journal of Engineering, 2021, 43(8): 1024-1031. doi: 10.13374/j.issn2095-9389.2020.12.03.004 |
[1] |
Takada K. Progress and prospective of solid-state lithium batteries. Acta Mater, 2013, 61(3): 759 doi: 10.1016/j.actamat.2012.10.034
|
[2] |
Sun C W, Liu J, Gong Y D, et al. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy, 2017, 33: 363 doi: 10.1016/j.nanoen.2017.01.028
|
[3] |
Zheng F, Kotobuki M, Song S F, et al. Review on solid electrolytes for all-solid-state lithium-ion batteries. J Power Sources, 2018, 389: 198 doi: 10.1016/j.jpowsour.2018.04.022
|
[4] |
Wang C H, Yang Y F, Liu X J, et. al. Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries. ACS Appl Mater Inter, 2017, 9: 13694 doi: 10.1021/acsami.7b00336
|
[5] |
Adnan S B R S, Salleh F M, Mohamed N S. Effect of interstitial Li+ ion and vacant site Li+ ion on the properties of novel Li2.05ZnAl0.05Si0.95O4 and Li1.95Zn0.95Cr0.05SiO4 ceramic electrolytes. Ceram Int, 2016, 42(15): 17941 doi: 10.1016/j.ceramint.2016.08.047
|
[6] |
Hallopeau L, Bregiroux D, Rousse G, et al. Microwave-assisted reactive sintering and lithium ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. J Power Sources, 2018, 378: 48 doi: 10.1016/j.jpowsour.2017.12.021
|
[7] |
Kokal I, Ramanujachary K V, Notten P H L, et al. Sol-gel synthesis and lithium ion conduction properties of garnet-type Li6BaLa2Ta2O12. Mater Res Bull, 2012, 47(8): 1932 doi: 10.1016/j.materresbull.2012.04.032
|
[8] |
Belous A G. Lithium ion conductors based on the perovskite La23?xLi3xTiO3. J Eur Ceram Soc, 2001, 21(10-11): 1797 doi: 10.1016/S0955-2219(01)00118-2
|
[9] |
Chen C H, Amine K. Ionic conductivity, lithium insertion and extraction of lanthanum lithium titanate. Solid State Ionics, 2001, 144(1-2): 51 doi: 10.1016/S0167-2738(01)00884-0
|
[10] |
Mitsuishi K, Ohnishi T, Tanaka Y, et al. Nazca Lines by La ordering in La2/3–xLi3xTiO3 ion-conductive perovskite. Appl Phys Lett, 2012, 101(7): 073903 doi: 10.1063/1.4744886
|
[11] |
Yu R, Du Q X, Zou B K, et al. Synthesis and characterization of perovskite-type (Li, Sr)(Zr, Nb)O3 quaternary solid electrolyte for all-solid-state batteries. J Power Sources, 2016, 306: 623 doi: 10.1016/j.jpowsour.2015.12.065
|
[12] |
Chen C H, Xie S, Sperling E, et al. Stable lithium-ion conducting perovskite lithium-strontium-tantalum-zirconium-oxide system. Solid State Ionics, 2004, 167(3-4): 263 doi: 10.1016/j.ssi.2004.01.008
|
[13] |
Kong Y Z, Li Y, Lu J Y, et al. Conductivity and electrochemical stability of perovskite-structured lithium-strontium-niobium-hafnium-oxide solid Li-ion conductors. J Mater Sci:Mater Electron, 2017, 28(12): 8621 doi: 10.1007/s10854-017-6586-2
|
[14] |
Huang B, Xu B Y, Li Y T, et al. Li-ion conduction and stability of perovskite Li3/8Sr7/16Hf1/4Ta3/4O3. ACS Appl Mater Interfaces, 2016, 8(23): 14552 doi: 10.1021/acsami.6b03070
|
[15] |
Kong Y Z, Li Y, Li J W, et al. Li ion conduction of perovskite Li0.375Sr0.4375Ti0.25Ta0.75O3 and related compounds. Ceram Int, 2018, 44(4): 3947 doi: 10.1016/j.ceramint.2017.11.186
|
[16] |
Kong Y Z, Li Y, Lu J Y, et al. Effect of doping (Al, La, Sm) on the conductivity of Li0.375Sr0.4375Hf0.25Ta0.75O3 ceramics. Mater Res Express, 2017, 4(9): 095504 doi: 10.1088/2053-1591/aa8ba7
|
[17] |
Lu J Y, Li Y. Conductivity and stability of Li3/8Sr7/16?3x/2LaxZr1/4Ta3/4O3 superionic solid electrolytes. Electrochimica Acta, 2018, 282: 409 doi: 10.1016/j.electacta.2018.06.085
|
[18] |
Mo S S, Lu P H, Ding F, et al. High-temperature performance of all-solid-state battery assembled with 95(0.7Li2S-0.3P2S5)-5Li3PO4 glass electrolyte. Solid State Ionics, 2016, 296: 37 doi: 10.1016/j.ssi.2016.09.002
|
[19] |
Cheng S, Smith D M, Li C Y. Anisotropic ion transport in a poly(ethylene oxide)-LiClO4 solid state electrolyte templated by graphene oxide. Macromolecules, 2015, 48(13): 4503 doi: 10.1021/acs.macromol.5b00972
|
[20] |
Lu D L, Ma J M, Wu J L, et al. Preparation and electrochemical properties of Li0.33SrxLa0.56?2/3xTiO3? based solid-state ionic supercapacitor. Ceram Int, 2019, 45(2): 2584 doi: 10.1016/j.ceramint.2018.10.192
|
[21] |
Sotomayor M E, Várez A, Bucheli W, et al. Structural characterisation and Li conductivity of Li1/2?xSr2xLa1/2?xTiO3 (0< x< 0.5) perovskites. Ceram Int, 2013, 39(8): 9619 doi: 10.1016/j.ceramint.2013.05.083
|
[22] |
Teranishi T, Kouchi A, Hayashi H, et al. Dependence of the conductivity of polycrystalline Li0.33BaxLa0.56-2/3xTiO3 on Ba loading. Solid State Ionics, 2014, 263: 33 doi: 10.1016/j.ssi.2014.05.001
|
[23] |
魏詮, 崔巍, 龍驤, 等. La(1?x)MxCoO3(M=Ca, Sr)表面狀態的XPS研究. 高等學校化學學報, 1990, 11(11):1227 doi: 10.3321/j.issn:0251-0790.1990.11.013
Wei Q, Cui W, Long X, et al. A investigation on the surface state of La1?xMx CoO3(M-Ca, Sr) perovskite oxides by XPS. Chem Res Chin Univ, 1990, 11(11): 1227 doi: 10.3321/j.issn:0251-0790.1990.11.013
|
[24] |
Yu K, Jin L, Li Y, et al. Structure and conductivity of perovskite Li0.355La0.35Sr0.3Ti0.995M0.005O3 (M = Al, Co and In) ceramics. Ceram Int, 2019, 45(18): 23941 doi: 10.1016/j.ceramint.2019.08.012
|
[25] |
Ofoegbuna T, Darapaneni P, Sahu S, et al. Stabilizing the B-site oxidation state in ABO3 perovskite nanoparticles. Nanoscale, 2019, 11(30): 14303 doi: 10.1039/C9NR04155A
|