<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
TIAN Guo-cai, YUAN Qing-xiang. Effect of dichloromethane and toluene on the structure, property, and Al electrodeposition in 1-butyl-3-methylimidazolium chloroaluminate ionic liquid[J]. Chinese Journal of Engineering, 2021, 43(8): 1037-1046. doi: 10.13374/j.issn2095-9389.2020.12.03.002
Citation: TIAN Guo-cai, YUAN Qing-xiang. Effect of dichloromethane and toluene on the structure, property, and Al electrodeposition in 1-butyl-3-methylimidazolium chloroaluminate ionic liquid[J]. Chinese Journal of Engineering, 2021, 43(8): 1037-1046. doi: 10.13374/j.issn2095-9389.2020.12.03.002

Effect of dichloromethane and toluene on the structure, property, and Al electrodeposition in 1-butyl-3-methylimidazolium chloroaluminate ionic liquid

doi: 10.13374/j.issn2095-9389.2020.12.03.002
More Information
  • Corresponding author: E-mail: tiangc01@163.com
  • Received Date: 2020-12-03
    Available Online: 2021-03-01
  • Publish Date: 2021-08-25
  • The electrodeposition of aluminum in ionic liquid has broad application prospects, and additives are an effective way to improve the performance of the aluminum coating. However, the relevant mechanism behind this remains to be clarified. In the present work, the effects of dichloromethane (DCM) and toluene (C7H8) on the microstructure, physicochemical properties, and aluminum electrodeposition with 1-butyl-3-methylimidazolium chloride/aluminum chloride ([BMIM]Cl/AlCl3) were studied using quantum chemistry and molecular dynamics simulation. It is found that DCM easily forms hydrogen bonds with anions and cations of ionic liquids. Since DCM is distributed between anion and cation, the distance between the anion and cation increases, and the interaction energy decreases. As a result, the diffusion ability of anions and cations is enhanced, and the aluminum complex anions tend to exist in the form of ${\rm{A}}{{\rm{l}}_2}{\rm{Cl}}_7^ - $. The viscosity of the system decreases, and the conductivity increases, so the electrochemical properties of the system are significantly improved, which are in good agreement with the experimental values. C7H8 is adsorbed on the protruding part of the electrode surface in a flat way, which plays a leveling role and results in a flat white coating. Alternatively, DCM easily interacts with the electroactive ion ${\rm{A}}{{\rm{l}}_2}{\rm{Cl}}_7^ - $, which makes it difficult to reduce this electroactive ion. At the same time, the concentration of the electroactive ion decreases as the concentration of the additive is increased, which leads to a large overpotential in the electrochemical process, resulting in a decrease in the electrode reaction rate that plays a role in grain refinement. Moreover, the interaction between DCM and cations is also strong, and they can be adsorbed on the protruding part of the electrode surface during the electrochemical process, playing a certain leveling role. Therefore, the addition of DCM can obtain specular gloss deposits. The effect of C7H8 on the interaction between anions and cations is not as good as DCM, which consequently results in inferior electrochemical properties compared to DCM. Therefore, DCM is more favorable for the electrodeposition of aluminum than the aromatic hydrocarbon C7H8.

     

  • loading
  • [1]
    邱竹賢. 世界鋁工業與新技術發展趨勢. 有色冶煉, 2000, 29(2):1

    Qiu Z X. World aluminum industry and development trend of new technology. Non Ferr Smelt, 2000, 29(2): 1
    [2]
    劉業翔, 李劼. 現代鋁電解. 北京: 冶金工業出版社, 2008

    Liu Y X, Li J. Modern Aluminum Electrolysis. Beijing: Metallurgical Industry Press, 2008
    [3]
    闞洪敏, 邱竹賢, 張剛. 低溫鋁電解. 沈陽: 東北大學出版社, 2009

    Kan H M, Qiu Z X, Zhang G. Low Temperature Aluminum Electrolysis. Shenyang: Northeast University Press, 2009
    [4]
    盧惠民, 邱竹賢. 低溫鋁電解的研究進展. 輕金屬, 1997(4):24

    Lu H M, Qiu Z X. Research progress of low temperature aluminum electrolysis. Light Met, 1997(4): 24
    [5]
    鄧友全. 離子液體——性質, 制備與應用. 北京: 中國石化出版社, 2006

    Deng Y Q. Ionic liquids —— Properties, Preparation and Application. Beijing: China Petrochemical Press, 2006
    [6]
    張鎖江, 呂興梅. 離子液體: 從基礎研究到工業應用. 北京: 科學出版社, 2006

    Zhang S J, Lü X M. Ionic liquids: From Basic Research to Industrial Application. Beijing: Science Press, 2006
    [7]
    Wasserscheid P, Welton T. Ionic Liquids in Synthesis. New Jersey: John Wiley & Sons, 2008
    [8]
    Zhang M M, Kamavarum V, Reddy R G. New electrolytes for aluminum production: Ionic liquids. JOM, 2003, 55(11): 54 doi: 10.1007/s11837-003-0211-y
    [9]
    田國才, 李堅, 華一新. 離子液體在有色金屬冶金中的應用. 過程工程學報, 2009, 9(1):200 doi: 10.3321/j.issn:1009-606X.2009.01.039

    Tian G C, Li J, Hua Y X. Application of ionic liquids in metallurgy of nonferrous metals. Chin J Process Eng, 2009, 9(1): 200 doi: 10.3321/j.issn:1009-606X.2009.01.039
    [10]
    Tian G C, Li J, Hua Y X. Application of ionic liquids in hydrometallurgy of nonferrous metals. Trans Nonferrous Met Soc China, 2010, 20(3): 513 doi: 10.1016/S1003-6326(09)60171-0
    [11]
    Mohammad A, Inamuddin D. Green Solvents II: Properties and Applications of Ionic Liquids//Tian G C. Application of ionic liquids in extraction and separation of metals. Berlin: Springer Netherlands, 2012: 119
    [12]
    Tian G C. Ionic liquids as green electrolytes for aluminum and aluminum-alloy production. Mater Res Found, 2019, 54: 249
    [13]
    鐘熊偉, 熊婷, 陸俊, 等. 離子液體電解質體系鋁及鋁合金電沉積與鋁精煉研究進展. 有色金屬科學與工程, 2014, 5(2):44

    Zhong X W, Xiong T, Lu J, et al. Advances of electro-deposition and aluminum refining of aluminum and aluminum alloy in ionic liquid electrolytes system. Nonferrous Met Sci Eng, 2014, 5(2): 44
    [14]
    劉慶生, 薛濟來, 朱駿, 等. 添加劑對鋁電解炭基陰極鈉滲透膨脹過程的影響. 北京科技大學學報, 2008, 30(4):403 doi: 10.3321/j.issn:1001-053X.2008.04.015

    Liu Q S, Xue J L, Zhu J, et al. Effects of additives on the sodium penetration and expansion of carbon-based cathodes during aluminum electrolysis. J Univ Sci Technol Beijing, 2008, 30(4): 403 doi: 10.3321/j.issn:1001-053X.2008.04.015
    [15]
    鄭勇, 王倩, 鄭永軍, 等. 離子液體體系電解鋁技術的研究與應用進展. 過程工程學報, 2015, 15(4):713 doi: 10.12034/j.issn.1009-606X.215194

    Zheng Y, Wang Q, Zheng Y J, et al. Advances in research and application of aluminium electrolysis in ionic liquid systems. Chin J Process Eng, 2015, 15(4): 713 doi: 10.12034/j.issn.1009-606X.215194
    [16]
    Fleury V, Kaufman J H, Hibbert D B. Mechanism of a morphology transition in ramified electrochemical growth. Nature, 1994, 367(6462): 435 doi: 10.1038/367435a0
    [17]
    Yue G K, Lu X M, Zhu Y L, et al. Surface morphology, crystal structure and orientation of aluminium coatings electrodeposited on mild steel in ionic liquid. Chem Eng J, 2009, 147(1): 79 doi: 10.1016/j.cej.2008.11.044
    [18]
    Abbott A P, Qiu F, Abood H M, et al. Double layer, diluent and anode effects upon the electrodeposition of aluminium from chloroaluminate based ionic liquids. Phys Chem Chem Phys, 2010, 12(8): 1862 doi: 10.1039/B917351J
    [19]
    Liu L, Lu X M, Cai Y J, et al. Influence of additives on the speciation, morphology, and nanocrystallinity of aluminium electrodeposition. Aust J Chem, 2012, 65(11): 1523 doi: 10.1071/CH12305
    [20]
    Ueda M, Hariyama S, Ohtsuka T. Al electroplating on the AZ121 Mg alloy in an EMIC-AlCl3 ionic liquid containing ethylene glycol. J Solid State Electrochem, 2012, 16(11): 3423 doi: 10.1007/s10008-012-1801-9
    [21]
    Zhang Q Q, Wang Q, Zhang S J, et al. Effect of nicotinamide on electrodeposition of Al from aluminium chloride (AlCl3)-1-butyl-3-methylimidazolium chloride ([Bmim]Cl) ionic liquids. J Solid State Electrochem, 2014, 18(1): 257 doi: 10.1007/s10008-013-2269-y
    [22]
    Wang Q, Zhang Q Q, Chen B, et al. Electrodeposition of bright Al coatings from 1-butyl-3-methylimidazolium chloroaluminate ionic liquids with specific additives. J Electrochem Soc, 2015, 162(8): D320 doi: 10.1149/2.1001507jes
    [23]
    Wang Q, Chen B, Zhang Q Q, et al. Aluminum deposition from lewis acidic 1-butyl-3-methylimidazolium chloroaluminate ionic liquid ([Bmim]Cl/AlCl3) modified with methyl nicotinate. Chem Electro Chem, 2015, 2(11): 1794
    [24]
    Sheng P F, Chen B, Shao H B, et al. Electrodeposition and corrosion behavior of nanocrystalline aluminum from a chloroaluminate ionic liquid. Mater Corros, 2015, 66(11): 1338 doi: 10.1002/maco.201508272
    [25]
    冷明浩. 離子液體電沉積鋁微觀形貌研究[學位論文]. 沈陽: 沈陽師范大學, 2015

    Leng M H. Study on Morphology of Electrodeposition of Aluminum from Ionic Liquid [Dissertation]. Shenyang: Shenyang Normal University, 2015
    [26]
    李志濤, 田國才. 苯對1-乙基-3-甲基咪唑三氯化鋁結構與性質影響的模擬研究. 計算機與應用化學, 2015, 32(9):1044

    Li Z T, Tian G C. Simulation study of the effect of benzene on the structure and properties of 1-ethyl-3-methylimidazolium chloroaluminate. Comput Appl Chem, 2015, 32(9): 1044
    [27]
    Lang H Y, Zhang J L, Kang Y H, et al. Effects of lithium bis (oxalato) borate on electrochemical stability of [Emim][Al2Cl7] ionic liquid for aluminum electrolysis. Ionics, 2017, 23(4): 959 doi: 10.1007/s11581-016-1889-5
    [28]
    Abbott A P, McKenzie K J. Application of ionic liquids to the electrodeposition of metals. Phys Chem Chem Phys, 2006, 8(37): 4265 doi: 10.1039/b607329h
    [29]
    Robinson J, Osteryoung R A. An electrochemical and spectroscopic study of some aromatic hydrocarbons in the room temperature molten salt system aluminum chloride-n-butylpyridinium chloride. J Am Chem Soc, 1979, 101(2): 323 doi: 10.1021/ja00496a008
    [30]
    Pulletikurthi G, B?decker B, Borodin A, et al. Electrodeposition of Al from a 1-butylpyrrolidine-AlCl3 ionic liquid. Prog Nat Sci:Mater Int, 2015, 25(6): 603 doi: 10.1016/j.pnsc.2015.11.003
    [31]
    Uehara K, Yamazaki K, Gunji T K, et al. Evaluation of key factors for preparing high brightness surfaces of aluminum films electrodeposited from AlCl3-1-ethyl-3-methylimidazolium chloride-organic additive baths. Electrochimica Acta, 2016, 215: 556 doi: 10.1016/j.electacta.2016.08.125
    [32]
    Kang Y H, Chen S M, Wang Q, et al. Solvation effect of [BMIM]Cl/AlCl3 ionic liquid electrolyte. Ionics, 2019, 25(1): 163 doi: 10.1007/s11581-018-2586-3
    [33]
    Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Revision D. 01 [CP/OL]. Gaussian, Inc. (2009)[2020-11-06]. http://gaussian.com/glossary/g09/.
    [34]
    de Andrade J, B?es E S, Stassen H. Computational study of room temperature molten salts composed by 1-alkyl-3-methylimidazolium CationsForce-field proposal and validation. J Phys Chem B, 2002, 106(51): 13344 doi: 10.1021/jp0216629
    [35]
    Prampolini G, Campetella M, De Mitri N, et al. Systematic and automated development of quantum mechanically derived force fields: The challenging case of halogenated hydrocarbons. J Chem Theory Comput, 2016, 12(11): 5525 doi: 10.1021/acs.jctc.6b00705
    [36]
    Kim J H, Lee S H. Molecular dynamics simulation studies of benzene, toluene, and p-xylene in a canonical ensemble. Bull Korean Chem Soc, 2002, 23(3): 441 doi: 10.5012/bkcs.2002.23.3.441
    [37]
    Lyubartsev A P, Laaksonen A M. DynaMix - a scalable portable parallel MD simulation package for arbitrary molecular mixtures. Comput Phys Commun, 2000, 128(3): 565 doi: 10.1016/S0010-4655(99)00529-9
    [38]
    Allen M P, Tildesley D J. Computer Simulation of Liquids. Oxford: Oxford University Press, 2017
    [39]
    Tuckerman M, Berne B J, Martyna G J. Reversible multiple time scale molecular dynamics. J Chem Phys, 1992, 97(3): 1990 doi: 10.1063/1.463137
    [40]
    Morrow T I, Maginn E J. Molecular dynamics study of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. J Phys Chem B, 2002, 106(49): 12807 doi: 10.1021/jp0267003
    [41]
    Dong K, Song Y T, Liu X M, et al. Understanding structures and hydrogen bonds of ionic liquids at the electronic level. J Phys Chem B, 2012, 116(3): 1007 doi: 10.1021/jp205435u
    [42]
    Marekha B A, Kalugin O N, Idrissi A. Non-covalent interactions in ionic liquid ion pairs and ion pair dimers: A quantum chemical calculation analysis. Phys Chem Chem Phys, 2015, 17(26): 16846 doi: 10.1039/C5CP02197A
    [43]
    鄭勇. 離子液體在低溫電解鋁中的應用研究[學位論文]. 北京: 中國科學院大學, 2013

    Zheng Y. Application of Ionic Liquids in Low Temperature Aluminum Electrolysis [Dissertation]. Beijing: University of Chinese Academy of Sciences, 2013
    [44]
    Xia S, Zhang X M, Huang K, et al. Ionic liquid electrolytes for aluminium secondary battery: Influence of organic solvents. J Electroanal Chem, 2015, 757: 167 doi: 10.1016/j.jelechem.2015.09.022
    [45]
    Zheng Y, Dong K, Wang Q, et al. Density, viscosity, and conductivity of lewis acidic 1-butyl- and 1-hydrogen-3-methylimidazolium chloroaluminate ionic liquids. J Chem Eng Data, 2013, 58(1): 32 doi: 10.1021/je3004904
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article views (992) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频