Citation: | LI Zhao-feng, CHEN Jing-peng, YANG Lei, QI Yan-hai, ZHANG Jian, ZHANG Chen. Influence mechanism of limestone powder on red mud-based grouting material[J]. Chinese Journal of Engineering, 2021, 43(6): 768-777. doi: 10.13374/j.issn2095-9389.2020.12.01.005 |
[1] |
Tan J W, Cai J M, Huang L C, et al. Feasibility of using microwave curing to enhance the compressive strength of mixed recycled aggregate powder based geopolymer. Constr Build Mater, 2020, 262: 120897 doi: 10.1016/j.conbuildmat.2020.120897
|
[2] |
Duxson P, Fernández-Jiménez A, Provis J L, et al. Geopolymer technology: the current state of the art. J Mater Sci, 2006, 42(9): 2917
|
[3] |
Davidovits J, Huaman L, Davidovits R. Ancient geopolymer in south-American monument. SEM and petrographic evidence. Mater Lett, 2019, 235: 120 doi: 10.1016/j.matlet.2018.10.033
|
[4] |
劉曉明, 唐彬文, 尹海峰, 等. 赤泥—煤矸石基公路路面基層材料的耐久與環境性能. 工程科學學報, 2018, 40(4):438
Liu X M, Tang B W, Yin H F, et al. Durability and environmental performance of Bayer red mud--coal gangue-based road base material. Chin J Eng, 2018, 40(4): 438
|
[5] |
肖軍輝, 梁冠杰, 黃雯孝, 等. 含鈧赤泥氯化鈉離析焙燒—弱磁選—鹽酸浸出分離鐵、鈧試驗研究. 工程科學與技術, 2019, 51(4):199
Xiao J H, Liang G J, Huang W X, et al. Research on separating iron and scandium of scandium-contained red mud using sodium chloride segregation roasting—low intensity magnetic separation—hydrochloric acid leaching. Adv Eng Sci, 2019, 51(4): 199
|
[6] |
Singh S, Aswath M U, Ranganath R V. Effect of mechanical activation of red mud on the strength of geopolymer binder. Constr Build Mater, 2018, 177: 91 doi: 10.1016/j.conbuildmat.2018.05.096
|
[7] |
Li Z F, Zhang J, Li S C, et al. Effect of different gypsums on the workability and mechanical properties of red mud-slag based grouting materials. J Clean Prod, 2020, 245: 118759 doi: 10.1016/j.jclepro.2019.118759
|
[8] |
Hoang M D, Do Q M, Le V Q. Effect of curing regime on properties of red mud-based alkali activated materials. Constr Build Mater, 2020, 259: 119779 doi: 10.1016/j.conbuildmat.2020.119779
|
[9] |
Li S C, Zhang J, Li Z F, et al. Feasibility study of red mud-blast furnace slag based geopolymeric grouting material: Effect of superplasticizers. Constr Build Mater, 2021, 267: 120910 doi: 10.1016/j.conbuildmat.2020.120910
|
[10] |
?elik S. An experimental investigation of utilizing waste Red Mud in soil grouting. KSCE J Civil Eng, 2017, 21(4): 1191 doi: 10.1007/s12205-016-0774-0
|
[11] |
Zhang J, Li S C, Li Z F. Investigation the synergistic effects in quaternary binder containing red mud, blast furnace slag, steel slag and flue gas desulfurization gypsum based on artificial neural network. J Clean Prod, 2020, 273: 122972 doi: 10.1016/j.jclepro.2020.122972
|
[12] |
劉娟紅, 周在波, 吳愛祥, 等. 低濃度拜耳赤泥充填材料制備及水化機理. 工程科學學報, 2020, 42(11):1457
Liu J H, Zhou Z B, Wu A X, et al. Preparation and hydration mechanism of low concentration Bayer red mud filling materials. Chin J Eng, 2020, 42(11): 1457
|
[13] |
申晨, 萬小梅, 張素磊, 等. 工程地聚物混凝土設計及力學性能研究進展. 混凝土, 2020(7):33 doi: 10.3969/j.issn.1002-3550.2020.07.008
Shen C, Wan X M, Zhang S L, et al. Research progress on design and mechanical properties of engineered geopolymer concrete. Concrete, 2020(7): 33 doi: 10.3969/j.issn.1002-3550.2020.07.008
|
[14] |
Lin C J, Dai W J, Li Z F, et al. Performance and microstructure of alkali-activated red mud-based grouting materials under class F fly ash amendment. Indian Geotech J, 2020, 50(6): 1048 doi: 10.1007/s40098-020-00438-y
|
[15] |
Gupta A. Investigation of the strength of ground granulated blast furnace slag based geopolymer composite with silica fume. Mater Today Proc, 2020, https://doi.org/10.1016/j.matpr.2020.06.010
|
[16] |
Song W L, Zhu Z D, Peng Y Y, et al. Effect of steel slag on fresh, hardened and microstructural properties of high-calcium fly ash based geopolymers at standard curing condition. Constr Build Mater, 2019, 229: 116933 doi: 10.1016/j.conbuildmat.2019.116933
|
[17] |
Xiang J C, Liu L P, Cui X M, et al. Effect of limestone on rheological, shrinkage and mechanical properties of alkali – Activated slag/fly ash grouting materials. Constr Build Mater, 2018, 191: 1285 doi: 10.1016/j.conbuildmat.2018.09.209
|
[18] |
Sun J W, Chen Z H. Influences of limestone powder on the resistance of concretes to the chloride ion penetration and sulfate attack. Powder Technol, 2018, 338: 725 doi: 10.1016/j.powtec.2018.07.041
|
[19] |
Wang D H, Shi C J, Farzadnia N, et al. A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Constr Build Mater, 2018, 181: 659 doi: 10.1016/j.conbuildmat.2018.06.075
|
[20] |
史才軍, 王德輝, 賈煌飛, 等. 石灰石粉在水泥基材料中的作用及對其耐久性的影響. 硅酸鹽學報, 2017, 45(11):1582
Shi C J, Wang D H, Jia H F, et al. Role of limestone powder and its effect on durability of cement-based materials. J Chin Ceram Soc, 2017, 45(11): 1582
|
[21] |
Bayiha B N, Billong N, Yamb E, et al. Effect of limestone dosages on some properties of geopolymer from thermally activated halloysite. Constr Build Mater, 2019, 217: 28 doi: 10.1016/j.conbuildmat.2019.05.058
|
[22] |
Aboulayt A, Riahi M, Ouazzani Touhami M, et al. Properties of metakaolin based geopolymer incorporating calcium carbonate. Adv Powder Technol, 2017, 28(9): 2393 doi: 10.1016/j.apt.2017.06.022
|
[23] |
Mu S, Liu J P, Lin W, et al. Property and microstructure of aluminosilicate inorganic coating for concrete: Role of water to solid ratio. Constr Build Mater, 2017, 148: 846 doi: 10.1016/j.conbuildmat.2017.05.070
|
[24] |
杜野, 裴向軍, 黃潤秋, 等. 黏度時變性注漿材料流動特性與應用研究. 巖土力學, 2017, 38(12):3498
Du Y, Pei X J, Huang R Q, et al. Study on flow characteristics and application of viscosity time-varying grouting material. Rock Soil Mech, 2017, 38(12): 3498
|
[25] |
Puertas F, Varga C, Alonso M M. Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution. Cem Concr Compos, 2014, 53: 279 doi: 10.1016/j.cemconcomp.2014.07.012
|
[26] |
Zhang J, Li S C, Li Z F, et al. Feasibility study of red mud for geopolymer preparation: effect of particle size fraction. J Mater Cycles Waste Manage, 2020, 22(5): 1328 doi: 10.1007/s10163-020-01023-4
|
[27] |
Thongsanitgarn P, Wongkeo W, Chaipanich A, et al. Heat of hydration of Portland high-calcium fly ash cement incorporating limestone powder: Effect of limestone particle size. Constr Build Mater, 2014, 66: 410 doi: 10.1016/j.conbuildmat.2014.05.060
|
[28] |
周輝, 孟凡震, 張傳慶, 等. 基于應力-應變曲線的巖石脆性特征定量評價方法. 巖石力學與工程學報, 2014, 33(6):1114
Zhou H, Meng F Z, Zhang C Q, et al. Quantitative evaluation of rock brittleness based on stress-strain curve. Chin J Rock Mech Eng, 2014, 33(6): 1114
|
[29] |
王勇, 吳愛祥, 王洪江, 等. 初始溫度條件下全尾膠結膏體損傷本構模型. 工程科學學報, 2017, 39(1):31
Wang Y, Wu A X, Wang H J, et al. Damage constitutive model of cemented tailing paste under initial temperature effect. Chin J Eng, 2017, 39(1): 31
|
[30] |
Zhang Z H, Li L F, Ma X, et al. Compositional, microstructural and mechanical properties of ambient condition cured alkali-activated cement. Constr Build Mater, 2016, 113: 237 doi: 10.1016/j.conbuildmat.2016.03.043
|
[31] |
Rode S, Oyabu N, Kobayashi K, et al. True atomic-resolution imaging of (
|