Citation: | ZHANG Ning, LI Ying, NI Pei-yuan. Enhanced electrochemical performance of LiNiO2 by B doping[J]. Chinese Journal of Engineering, 2021, 43(8): 1012-1018. doi: 10.13374/j.issn2095-9389.2020.11.30.004 |
[1] |
Xu G L, Liu X, Daali A, et al. Challenges and strategies to advance high-energy nickel-rich layered lithium transition metal oxide cathodes for harsh operation. Adv Funct Mater, 2020, 30(46): 2004748 doi: 10.1002/adfm.202004748
|
[2] |
Li J W, Li Y, Yi W T, et al. Improved electrochemical performance of cathode material LiNi0.8Co0.1Mn0.1O2 by doping magnesium via co-precipitation method. J Mater Sci:Mater Electron, 2019, 30(8): 7490 doi: 10.1007/s10854-019-01062-0
|
[3] |
Li J W, Li Y, Guo Y N, et al. A facile method to enhance electrochemical performance of high-nickel cathode material Li(Ni0.8Co0.1Mn0.1)O2 via Ti doping. J Mater Sci:Mater Electron, 2018, 29(13): 10702 doi: 10.1007/s10854-018-9093-1
|
[4] |
Deng T, Fan X L, Cao L S, et al. Designing in-situ-formed interphases enables highly reversible cobalt-free LiNiO2 cathode for Li-ion and Li-metal batteries. Joule, 2019, 3(10): 2550 doi: 10.1016/j.joule.2019.08.004
|
[5] |
Xu C, M?rker K, Lee J, et al. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat Mater, 2021, 20(1): 84 doi: 10.1038/s41563-020-0767-8
|
[6] |
安富強, 趙洪量, 程志, 等. 純電動車用鋰離子電池發展現狀與研究進展. 工程科學學報, 2019, 41(1):22
An F Q, Zhao H L, Cheng Z, et al. Development status and research progress of power battery for pure electric vehicles. Chin J Eng, 2019, 41(1): 22
|
[7] |
Wang L C, Li L, Wang H Y, et al. Fast capacitive energy storage and long cycle life in a deintercalation-intercalation cathode material. Small, 2020, 16(13): 1906025 doi: 10.1002/smll.201906025
|
[8] |
Li J, Harlow J, Stakheiko N, et al. Dependence of cell failure on cut-off voltage ranges and observation of kinetic hindrance in LiNi0.8Co0.15Al0.05O2. J Electrochem Soc, 2018, 165(11): A2682 doi: 10.1149/2.0491811jes
|
[9] |
Zhang N, Li J, Li H Y, et al. Structural, electrochemical, and thermal properties of nickel-rich LiNixMnyCozO2 materials. Chem Mater, 2018, 30(24): 8852 doi: 10.1021/acs.chemmater.8b03827
|
[10] |
Li H Y, Cormier M, Zhang N, et al. Is cobalt needed in Ni-rich positive electrode materials for lithium ion batteries? J Electrochem Soc, 2019, 166(4): A429 doi: 10.1149/2.1381902jes
|
[11] |
Li H Y, Zhang N, Li J, et al. Updating the structure and electrochemistry of LixNiO2 for 0≤x≤1. J Electrochem Soc, 2018, 165(13): A2985 doi: 10.1149/2.0381813jes
|
[12] |
Liu A, Zhang N, Li H Y, et al. Investigating the effects of magnesium doping in various Ni-rich positive electrode materials for Lithium ion batteries. J Electrochem Soc, 2019, 166(16): A4025 doi: 10.1149/2.1101915jes
|
[13] |
Ohzuku T, Ueda A, Kouguchi M. Synthesis and characterization of LiAl1/4Ni3/4O2 (R3-m) for lithium-ion (shuttlecock) batteries. J Electrochem Soc, 1995, 142(12): 4033 doi: 10.1149/1.2048458
|
[14] |
Li W D, Liu X M, Celio H, et al. Mn versus Al in layered oxide cathodes in lithium-ion batteries: A comprehensive evaluation on long-term cyclability. Adv Energy Mater, 2018, 8(15): 1703154 doi: 10.1002/aenm.201703154
|
[15] |
Steiner J, Cheng H, Walsh J, et al. Targeted surface doping with reversible local environment improves oxygen stability at the electrochemical interfaces of nickel-rich cathode materials. ACS Appl Mater Interfaces, 2019, 11(41): 37885 doi: 10.1021/acsami.9b14729
|
[16] |
Jiao L F, Zhang M, Yuan H T, et al. Effect of Cr doping on the structural, electrochemical properties of Li[Li0.2Ni0.2?x/2Mn0.6?x/2Crx]O2 (x = 0, 0.02, 0.04, 0.06, 0.08) as cathode materials for lithium secondary batteries. J Power Sources, 2007, 167(1): 178 doi: 10.1016/j.jpowsour.2007.01.070
|
[17] |
Ryu H H, Park N Y, Yoon D R, et al. New class of Ni-rich cathode materials Li[NixCoyB1–x–y]O2 for next lithium batteries. Adv Energy Mater, 2020, 10(25): 2000495 doi: 10.1002/aenm.202000495
|
[18] |
Mesnier A, Manthiram A. Synthesis of LiNiO2 at moderate oxygen pressure and long-term cyclability in lithium-ion full cells. ACS Appl Mater Interfaces, 2020, 12(47): 52826 doi: 10.1021/acsami.0c16648
|
[19] |
Pan L C, Xia Y G, Qiu B, et al. Structure and electrochemistry of B doped Li(Li0.2Ni0.13Co0.13Mn0.54)1–xBxO2 as cathode materials for lithium-ion batteries. J Power Sources, 2016, 327: 273 doi: 10.1016/j.jpowsour.2016.07.064
|
[20] |
Yang W, Xiang W, Chen Y X, et al. Interfacial regulation of Ni-rich cathode materials with an ion-conductive and pillaring layer by infusing gradient boron for improved cycle stability. ACS Appl Mater Interfaces, 2020, 12(9): 10240 doi: 10.1021/acsami.9b18542
|
[21] |
Huang B H, Liu D Q, Zhang L H, et al. An efficient synthetic method to prepare high-performance Ni-rich LiNi0.8Co0.1Mn0.1O2 for lithium-ion batteries. ACS Appl Energy Mater, 2019, 2(10): 7403 doi: 10.1021/acsaem.9b01414
|
[22] |
Nie Y, Xiao W, Miao C, et al. Boosting the electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode materials in situ modified with Li1.3Al0.3Ti1.7(PO4)3 fast ion conductor for lithium-ion batteries. Electrochimica Acta, 2020, 353: 136477 doi: 10.1016/j.electacta.2020.136477
|
[23] |
Yao L, Li Y P, Gao X P, et al. Microstructure boosting the cycling stability of LiNi0.6Co0.2Mn0.2O2 cathode through Zr-based dual modification. Energy Storage Mater, 2021, 36: 179 doi: 10.1016/j.ensm.2020.12.026
|
[24] |
Keefe A S, Weber R, Hill I G, et al. Studies of the SEI layers in Li(Ni0.5Mn0.3Co0.2)O2/artificial graphite cells after formation and after cycling. J Electrochem Soc, 2020, 167(12): 120507 doi: 10.1149/1945-7111/abaa1b
|
[25] |
Keefe A S, Buteau S, Hill I G, et al. Temperature dependent EIS studies separating charge transfer impedance from contact impedance in lithium-ion symmetric cells. J Electrochem Soc, 2019, 166(14): A3272 doi: 10.1149/2.0541914jes
|