Citation: | LI Ning, LIU Bing-guo, ZHANG Li-bo, LIU Peng, GUO Sheng-hui, DONG En-hua. Microwave absorption characteristics of cathode materials of waste ternary lithium-ion batteries[J]. Chinese Journal of Engineering, 2022, 44(7): 1222-1230. doi: 10.13374/j.issn2095-9389.2020.11.27.003 |
[1] |
Palacín M R, de Guibert A. Why do batteries fail? Science, 2016, 351(6273): 1253292
|
[2] |
高瑞, 王繼芬. 廢舊鋰電池正極材料LiNi1/3Co1/3Mn1/3O2中鈷的回收. 環境工程學報, 2020, 14(2):506 doi: 10.12030/j.cjee.201904118
Gao R, Wang J F. Recovery of cobalt from the LiNi1/3Co1/3Mn1/3O2 cathode of waste lithium-ion batteries. Chin J Environ Eng, 2020, 14(2): 506 doi: 10.12030/j.cjee.201904118
|
[3] |
吳越, 裴鋒, 賈蕗路, 等. 廢舊鋰離子電池中有價金屬的回收技術進展. 稀有金屬, 2013, 37(2):320 doi: 10.3969/j.issn.0258-7076.2013.02.023
Wu Y, Pei F, Jia L L, et al. Overview of recovery technique of valuable metals from spent lithium ion batteries. Chin J Rare Met, 2013, 37(2): 320 doi: 10.3969/j.issn.0258-7076.2013.02.023
|
[4] |
黎華玲, 陳永珍, 宋文吉, 等. 鋰離子動力電池的電極材料回收模式及經濟性分析. 新能源進展, 2018, 6(6):505 doi: 10.3969/j.issn.2095-560X.2018.06.007
Li H L, Chen Y Z, Song W J, et al. Electrode material recovery mode and economic analysis of lithium-ion power battery. Adv New Renew Energy, 2018, 6(6): 505 doi: 10.3969/j.issn.2095-560X.2018.06.007
|
[5] |
Saint J, Morcrette M, Larcher D, et al. Exploring the Li-Ga room temperature phase diagram and the electrochemical performances of the LixGay alloys vs Li. Solid State Ion, 2005, 176(1-2): 189 doi: 10.1016/j.ssi.2004.05.021
|
[6] |
Xu J Q, Thomas H R, Francis R W, et al. A review of processes and technologies for the recycling of lithium-ion secondary batteries. J Power Sources, 2008, 177(2): 512 doi: 10.1016/j.jpowsour.2007.11.074
|
[7] |
Innocenzi V, Ippolito N M, De Michelis I, et al. A review of the processes and lab-scale techniques for the treatment of spent rechargeable NiMH batteries. J Power Sources, 2017, 362: 202 doi: 10.1016/j.jpowsour.2017.07.034
|
[8] |
Sun Z, Cao H B, Zhang X H, et al. Spent lead-acid battery recycling in China - A review and sustainable analyses on mass flow of lead. Waste Manag, 2017, 64: 190 doi: 10.1016/j.wasman.2017.03.007
|
[9] |
徐樂, 高樹良, 翟國富. 基于ADAMS的連接器機械分離力分析及優化技術研究. 機電元件, 2016, 36(5):28 doi: 10.3969/j.issn.1000-6133.2016.05.006
Xu L, Gao S L, Zhai G F. ADAMS-based connector mechanical separation force analysis and optimization technology research. Electromechanical Compon, 2016, 36(5): 28 doi: 10.3969/j.issn.1000-6133.2016.05.006
|
[10] |
Pagnanelli F, Moscardini E, Altimari P, et al. Leaching of electrodic powders from lithium ion batteries: Optimization of operating conditions and effect of physical pretreatment for waste fraction retrieval. Waste Manag, 2017, 60: 706 doi: 10.1016/j.wasman.2016.11.037
|
[11] |
Zhang T, He Y Q, Wang F F, et al. Chemical and process mineralogical characterizations of spent lithium-ion batteries: An approach by multi-analytical techniques. Waste Manag, 2014, 34(6): 1051 doi: 10.1016/j.wasman.2014.01.002
|
[12] |
Li L, Dunn J B, Zhang X X, et al. Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment. J Power Sources, 2013, 233: 180 doi: 10.1016/j.jpowsour.2012.12.089
|
[13] |
Wang H L, Nie L, Li J, et al. Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries. Chin Sci Bull, 2013, 58(7): 724 doi: 10.1007/s11434-012-5345-2
|
[14] |
Nie H H, Xu L, Song D W, et al. LiCoO2: recycling from spent batteries and regeneration with solid state synthesis. Green Chem, 2015, 17(2): 1276 doi: 10.1039/C4GC01951B
|
[15] |
黎華玲, 陳永珍, 宋文吉, 等. 廢舊三元鋰離子電池正極有價金屬的回收工藝研究. 新能源進展, 2020, 8(1):75 doi: 10.3969/j.issn.2095-560X.2020.01.012
Li H L, Chen Y Z, Song W J, et al. Study on recovery process of valuable metals of ternary cathode in spent lithium-ion battery. Adv New Renew Energy, 2020, 8(1): 75 doi: 10.3969/j.issn.2095-560X.2020.01.012
|
[16] |
Li H Y, Long H L, Zhang L B, et al. Effectiveness of microwave-assisted thermal treatment in the extraction of gold in cyanide tailings. J Hazard Mater, 2020, 384: 121456 doi: 10.1016/j.jhazmat.2019.121456
|
[17] |
Li K Q, Chen J, Peng J H, et al. Dielectric properties and thermal behavior of electrolytic manganese anode mud in microwave field. J Hazard Mater, 2020, 384: 121227 doi: 10.1016/j.jhazmat.2019.121227
|
[18] |
Ye X L, Guo S H, Qu W W, et al. Microwave field: High temperature dielectric properties and heating characteristics of waste hydrodesulfurization catalysts. J Hazard Mater, 2019, 366: 432 doi: 10.1016/j.jhazmat.2018.12.024
|
[19] |
Pozar D M. Microwave Engineering. 4th Ed. New York: John wiley & sons, 2011
|
[20] |
廖宇濤. 碳納米管復合材料的電磁參數與吸收電磁波性能的研究[學位論文]. 廣州: 廣東工業大學, 2006
Liao Y T. Study on the Electro-Magnetic Parameter and Mircowave Absorption Property of Carbon Nanotuber Composties [Dissertation]. Guangzhou: Guangdong University of Technology, 2006
|
[21] |
劉順華, 管洪濤, 段玉平, 等. 二氧化錳復合材料吸波特性研究. 功能材料, 2006, 37(2):197 doi: 10.3321/j.issn:1001-9731.2006.02.009
Liu S H, Guan H T, Duan Y P, et al. Electromagnetic absorbing characteristics of manganese dioxide composites. J Funct Mater, 2006, 37(2): 197 doi: 10.3321/j.issn:1001-9731.2006.02.009
|
[22] |
Zhao Y Z, Liu B G, Zhang L B, et al. Microwave-absorbing properties of cathode material during reduction roasting for spent lithium-ion battery recycling. J Hazard Mater, 2020, 384: 121487 doi: 10.1016/j.jhazmat.2019.121487
|
[23] |
Chaudhury A K, Rao K V. Dielectric properties of single crystals of MnO and of mixed crystals of MnO/CoO and MnO/NiO. Phys Status Solidi B, 1969, 32(2): 731 doi: 10.1002/pssb.19690320225
|
[24] |
He F, Chen J, Chen G, et al. Correction to: Microwave dielectric properties and reduction behavior of low-grade pyrolusite. JOM, 2020, 72(10): 3706 doi: 10.1007/s11837-020-04187-4
|
[25] |
蘇秀娟, 莫秋紅, 何春林, 等. 錳及其化合物微波吸收性能研究. 礦冶工程, 2015, 35(5):90 doi: 10.3969/j.issn.0253-6099.2015.05.024
Su X J, Mo Q H, He C L, et al. Microwave absorption characteristics of manganese compounds. Min Metall Eng, 2015, 35(5): 90 doi: 10.3969/j.issn.0253-6099.2015.05.024
|
[26] |
Shang X B, Chen J R, Peng J H, et al. Thickness optimization for petroleum coke in microwave dehydrating based on the analysis of dynamic absorption efficiency. High Temp Mater Process, 2015, 34(4): 367
|